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In this paper we present a non-rigid registratiogthad to align pre-operative MRI (preMRI)
with resected intra-operative MRI (iMRI) to compatesfor brain deformation during tumor re-
section. This method formulates the registratiom dlsree-variable (point correspondence, de-
formation field and resection region) functionalnimization problem, in which point corre-
spondence is represented by a fuzzy assign mdefaymation field is represented by a piece-
wise linear function regularized by the strain giyeof a heterogeneous biomechanical model,
and resection region is represented by a maximatlexied tetrahedral mesh. A Nested Expec-
tation and Maximization framework is developed tmdtaneously resolve these three vari-
ables. This method accommodates a heterogeneonedh@anical model as the regularization
term to realistically describe the underlying defation field, and allows the removal of the te-
trahedra from the model to simulate the tumor mésecA simple two tissue heterogeneous
model (ventricle plus the rest of the brain) isdus® evaluate this method on 14 clinical cases.
The experimental results show the effectivenesthisf method in correcting the deformation
induced by resection. The comparison between theogeneous model and the heterogeneous
model demonstrates the statistical significancthefimprovement brought by the heterogene-
ous model (P-value 0.04).

1. Introduction

Brain shift severely compromises the fidelity ofdge-Guided Neurosurgery
(IGNS). Most studies use a biomechanical modelstimate the brain shift
based on sparse intra-operative data after the idungened [1-3]. Very few
studies in the literature address brain deformadionng and after tumor resec-
tion. The difficulty originates from the fact thagsection creates a cavity,
which renders the biomechanical model defined @agprerative MRI inaccu-
rate due to the existence of the additional pathefmodel corresponding to the
resection region. In this work, the model accuradly be improved by 1) re-
moving the tetrahedra in the model correspondineaesection region and 2)
building a heterogeneous biomechanical model, wisi¢acilitated by our mul-
ti-tissue mesh generation method [4].
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In [5], Miga et al. investigated tissue retract@md resection using sparse Op-
erating Room (OR) data and a finite element mobety developed a two-step
method: 1) remove tissue volume by manual delediomodel elements that
coincide with the targeted zone and then 2) applyndary conditions to the
new surfaces created during the excision procesterimining the cavity is
challenging because a portion of it will be fillbg surrounding tissues [6]. Our
method eliminates the manual removal step by trgdtie resection region as a
variable, which is able to be automatically resdNmy a Nested Expectation
and Maximization (EM) framework, an extension aditional EM optimiza-
tion [7]. Based on the bijective Demons algoritfRisholm et al. presented an
elastic FEM-based registration algorithm and evaldidt on the registration of
2D pre- with intra-operative images, where a supeiftumor has been re-
sected [8]. Ding et al. [6] presented a semi-aatiicnrmethod based on post-
brain tumor resection and laser range data. Vesselsdentified in both pre-
operative MRI and laser range image; then the RoBamt Matching (RPM)
method [9] is used to force the corresponding \ssgeexactly match each
other under the constraint of the bending energh®fwhole image. RPM uses
Thin-Plate Splines (TPS) as the mapping functidhe basis function of TPS is
a solution of the biharmonic [10], which does nawé& compact support and
will therefore lead to, in real application, unist deformation in the region
far away from the matching points. In other wold®M is not suitable for es-
timating deformation using sparse data. We usstertgeneous biomechanical
model to realistically simulate the underlying mment of the brain, which ex-
tends our previous work using a homogeneous ma&g¢! [

In this work, we target the specific feature pdiased non-rigid registration
(NRR) problem, which can be stated as:

Given a heterogeneous patient-specific brain model, a source point set in pre-
operative MRI and a target point set in intra-operative MRI, find point corre-
spondence, deformation field and resection region.

To resolve this problem, the three variables acerporated into one cost func-
tion, which is minimized by a Nested EM strategheTdeformation field is
represented by a displacement vector defined onmésh nodes, the corre-
spondence between two point sets is representedd doyrespondence matrix,
and the resection region is represented by a ctetheobmesh.



2. Method

In this section, we first develop the cost functgiep by step from a simple
point-based non-rigid registration cost functiorthe three-variable cost func-
tion, and then present a Nested Expectation andrMaation framework to re-
solve it.

2.1 Cost Function

Given, a source point s&={s}\, 00° and a target point set={t}, 00°,
with known correspondence, i.es, corresponding td , the point-based non-
rigid registration problem can be formulated as:

u = argmin([ Ru)dQ +4Y|ls +u(s) -t ) 1)

sQ

where the first term is regularization or smootheamgrgy, and the second term
Is similarity energyuis the deformation field, and controls the trade-off be-
tween these two energieQ is the problem domain, namely the segmented
brain. The removed tumor influenc&s, and therefore influences both terms in
equation (1). We extend equation (1) to equatigrb{2specifying the regulari-
zation term with the strain energy of a linear e&tasiodel, removing the limita-
tion of correspondence betwe&andT , and accommodating tumor resection.
@, Q)= argrrg)in( J'a(u)g(u)d(Q -Q)+
uGj. 0-Q'

(2)
A X lls +u(s) = YcptyIP) + 4, [[ dxdydz
§OQ-0 t;0Qg o)

where variableQ' represents the resection region, and variagpleeflects the
degree to which poing corresponds to,. Thec; is defined as in RPM [9]

with soft assignment. The Classic Iterative Clodesint (ICP) method [11]
treats the correspondence as a binary variableaasidns the value based on
the nearest-neighbor relationship. However, thigp# and crude assignment is
not valid for non-rigid registration, especially @rhlarge deformation and out-
liers are involved [18]. We define a ran@g,, a sphere centered at the source
point with radiusR, and only take into account: 1) the target poimsich are
located inQy of the source point, and 2) the source pointsciwvhiave at least
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one target point i ;. Thus, with this simple extension of RPM, our noetls
capable of eliminating outliers existing in bothirgosets. The first two terms
come from the extension of equation (1), and teeterm is used to prevent too
much regions from being rejected.

The homogeneous model employed in the regularizaéion in equation (2) is
further extended to the following heterogeneous ehod

0,c,, Q) =argmin( Y [0 (e (u)dQ, +

uG.Q' Q0-'q, (3)

A D lls+u(s)- 2 g, ||2)+/12J"”dxdydz
t Q'

s00-Q' 0Qg

whereUQ, =Q-Q",i=1.n.

Remark If n=1,Q'= Empty , andg; =1 then equation (3) is reduced to equa-

tion (1), which means the proposed method can e&ed as a general point
based NRR method characterized by 1) employing tarégeneous biome-
chanical model as the regularization, 2) accommogaicomplete data, and 3)
without correspondence requirement.

Equation (3) is approximated by equation (4) udinige element method:

JU,C.Mgg,) = S UTKU + 4, (HU = D(C)) W(HU = D(C)) + L Mpe,|  (4)

Rem

whereu "K,U approximates{g o, (U)& (u)dQ, as in [12, 20].C is a point corre-

spondence matrix with entries. The equation to calculate will be given
later. The entries of the vector D are defined as:
d(c)=s -2, , Gt ,0s OM\M,, , whereM is the non-resected mesh that
approximatex2, andM___ is the removed mesh that approximates The
first term of equation (4) is the strain energyeassled on all elements in

M \Mg.,,» the second term is similarity energy defined alinsource points
s UM\ M., and the third term prevents too much tetrahedaahfbeing re-
jected.

W in the second term is a weighted matrix of s¥#x39. W is a block-
diagonal matrix whos8x 3 submatrixW, is defined a%vag, wherem is the
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number the vertices of the me%‘l.makes the matching term independent of

the numbers of the vertices and the registrationr¢e) points.S™ is the av-

erage stiffness tensor fde-th registration point.S’® makes the registration

point behavior like an elastic node of the finitereent model. Assume tHe-
th registration point is located in the tetrahedrdefined by vertices

c,i0[0:3]. S§* is calculated byS™ =Zi3:0hKci , whereK_ is a3x3 sub-
matrix of the global stiffness matriK . h is the interpolation factor, the ele-

ment of the global linear interpolation mattk[16].
Finding C and M., is equivalent to outlier rejection. We developeNested

Expectation and Maximization method to iterativedjyect point and element
outliers.

2.2 Nested Expectation and M aximization

The Expectation and Maximization (EM) algorithm [g]a general algorithm

for maximum-likelihood [13] estimation of the modsrameter (unknowns) in

the presence of missing or hidden data. EM proceedsively to estimate the

model parameters. Each iteration of the EM algorittonsists of two steps:

The E step and the M step. In the E step, the ngs$ata is estimated given the
observed data and current estimate of the modahpeters. In the M step, the
likelihood function is maximized under the assumptihat the missing data is
known. The estimate of the missing data from th&tdp is used in lieu of the
actual missing data. Convergence is assured sicalgorithm is guaranteed
to increase the likelihood at each iteration [7].

The proposed Nested EM framework is shown in Figlie inner EM is used

to resolve(U,C) with M., fixed, and the outer EM is used to resoMg,,,

Miem IS approximated as a collection of tetrahedratkxtan a region of the
model, which corresponds to the resection regiotheintra-operative MRI.

Me., IS initialized as empty and updated at each it@madf the outer EM. If

all the tetrahedra contained in the resection regi@ collected, the outer EM
stops.
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Figure 1. Nested Expectation and Maximization Fraoré

221 Inner EM
Inner EM is used to resolv@),C) given M

Rem *

For each source poirg, assume its correspondences are subject to Gaussia
distribution, soc; can be estimated (E step) by equation (5).

~(t;-s)*
e ® 0Ot,0Qqj=1.m (5)

__ G : 1

c. = ,C =
” kazlc"k J R\/ZT

OnceC is estimatedU can be resolved by solving the minimization edurati
obtained by setting the derivative of functiona) (@ zero, i.e.dJ/dU =0 .
A,can be ignored because the last term becomes tantrihe resolvet) is

used to warpS closer toT , and then the correspondereis estimated again.
The pseudo code of the inner EM is presented in Alg



[U, Cl=PtOutlierRejection(M, Mg ., S, T, e, 7)

Input: M: non-resected mesh, Mp..: resected mesh, S: source
points, T": target points, e: tolerance, r: annealing rate, I?: search
ragne, .5: source points, 7" target points

Output: U: displacement vector, C': correspondence matrix

L U«=1T

2: repeat

3:  Transform S based on U: S <= U(S)

4 E step:
// outlier rejection for S

5 S < 5\ {s:] if no target points in (g for s; }
// outlier rejection for T

6 S < T\ {t;| if no source points list it within Qp }
T: Estimate correspondence C'

8 M step:

0: Solve U

10: change < |U; — U;_1|| between successive iterations

I1:  Decrease R: R<= R xr
12: until change < €

Alg. 1: Feature Point Outlier Rejection (inner EM)

2.2.2 Outer EM
Outer EM is used to findA

In E step,M,,, is resolved by an element outlier rejection aliyon. M is

approximated by a collection of tetrahedron ouslievhich fall in the resection
region of the intra-operative MRI. The resecti@gion does not need to be
identified in the intra-operative MRI, and it is fiact impossible to distinguish
the resection region from the background. The Bemkgd ImageBGI includ-
ing the resection region and the background cavebg easily segmented by a
simple threshold segmentation method. However, amnat determine if a tet-
rahedron is an outlier based only on whether located in theBGl because
this tetrahedra might happen to fall in the backgrbrather than the resection
region. To make the element outlier rejection atar robust, we utilize the
fact that the resection region is a collectionaetfaghedra, which not only fall in
the BGI of intra-operative MRI, but also connect with eather and consti-
tute a maximal connected submesh. The collectidheooutliers proceeds it-
eratively, and at each iteration, more specifictlily E step of outer EM, addi-
tional outliers will be added int¥ ., if they fall in the BGI and connect with

the maximal connected submesh identified in previteration.

Rem *

In M step,(U,C) is resolved by the inner EM.

Rem
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The element outlier rejection algorithm is presdnieAlg. 2.

[ M rem . Sl=EleCalierRejection(M, M g..,. U, BGT)

Input: M: non-resected mesh, M g.,,.: removed mesh,
[7: displacement vector, BGI: background image
Output: Mp.r: new removed mesh, 5: new source points
1: Obtain deformed resected mesh Mp.r <= UM\ Mpem)

2. Find all elements M, completely contained in the background
image EBEGT and constitute the largest connected mesh with
-'Hl'[l'ﬂcm

3 Map My in Mp.r to Ma in M \ Mpem

4: 8 <=8\ {s:i|s. € M2}

5 J“LIH{:TJ'.' = Jnl'-fr”.f:m L ﬂ'jﬂ

6: Scale Young's modulus for the elements across the boundary

Alg. 2: Element Outlier Rejection

The outer EM iteratively rejects element outliessng Alg. 2 and computes
<U,C> using Alg. 1 until no additional element outliease detected. Alg. 3
presents the whole pseudo code of the Nested Edfithm.

U, Mpem, Cl=NEMNRR(preM RI,iM RI)

Input: preM RI: pre-operative MRI, iAM RI: intra-operative MRI
QOutput: [7: displacement vector
1: Segment brain on preM Rl and do mesh generation to produce
M

2: Segment background image BGI on iMRI

3: Canny edge detection on preM RI to get §

4: Canny edge detection on i M R to get T

5: Input K. €, and 7

6: Initiate Mpe, = &

7: repeat

8 M step: U, C' <=PrOutlierRejection( M, Mpeom, S, T, €, 17, B)
0: E step: Mpem., S <=EleOutlierRejection( M, M g, .U, BGI)
10: until Mg, does not change

Alg. 3: Nested Expectation and Maximization



3. Results

We conducted experiments on 14 clinical cases uBiRg data, which were
acquired with the protocol: T1-weighted magnetmatprepared rapid gradient
echo (MPRAGE) sagittal images with [dimension = 26856 x 176, in plane
resolution = 1.0 x 1.0 mm, thickness = 1.0 mm, FO256 x 256].

Fig. 2 a) shows the multi-tissue mesh we used ild the heterogeneous model.

Deformation Magnitude
18.2

~16.0

Figure 2. a) Multi-tissue mesh: brain and ventritle Deformation field of resected heteroge-
neous model.

Fig. 2 b) shows the result of element outlier réggcproduced by Alg. 2 and

the deformation field of the heterogeneous modgbo&ion of the brain is cut

off to expose the ventricle and its deformationdfielrhe largest deformation

reaches 18.2 mm, still in the effective range @flihear elastic biomechanical
model. The larger deformation occurs in the regiear the resection, and the
ventricle on the tumor side is squeezed inwardhasatrows show.

Fig. 3 shows the results of point outlier rejectmoduced by Alg. 1. Compar-
ing to the edges before outlier rejection, mosnhpoutliers are removed after
outlier rejection.

Fig. 4 shows the results of the Nested EM method.sdperimpose edges de-
tected on iMRI onto preMRI and warped preMRI, resdpely, to illustrate the
improvement of the boundary matching after regisina
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Figure 3. Point outlier rejection. The blue poiate edge detected by canny edge detection. The
top two figures are edge points before outlieraépm. The bottom two figures are remaining
edge points after outlier rejection.

- e s - — -
— ] L iy | r

Figure 4. Qualitative evaluaion regarding cannge=d The blue pints are edge detected by
canny edge detection on iMRI. The detected edgatpare superimposed on the preMRI (left)
and warped preMR (right).

To quantitatively evaluate the proposed method,sdatff Distance (HD) [17]
is employed as the measurement of the registrattoaracy. We use outlier re-
jected edge points in preMRI and iMRI to calculgt® before non-rigid regis-
tration (after rigid registration), and use outliefected edge points in iMRI and
warped preMRI to calculated the HD after registratiBoth homogeneous
model and heterogeneous model are used for thstnagn. As shown in Ta-
ble 1, both models can significantly improve theuwaacy.
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Table 1. Quantitative evaluation of Nested EM NRigarding edge points using HD for 14
cases. “Rigid” denotes the error after rigid ragison, “Homo” denotes the error after non-
rigid registration using a homogeneous model, “Hdenotes the error after non-rigid registra-
tion using a heterogeneous model, and the “Home'H#notes the improvement brought by
the heterogeneous model. The unit of the erromis ) =1.0. R=10.0mm.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Rigid 8.31 9.27 1543 1170 11.49 9.85 1269 212 10.34  13.30 14.28 13.64 13.60 15.26
Homo 117 112 154 122 1.62 150 154 212 1.54 1.88 3.81 3.96 2.19 2.95

Hete 1.13 1.06 1.33 1.14 1.58 132 195 1.41 1.50 1.85 2.96 3.66 2.14 2.18

Homo- 0.04 0.06 0.21 0.08 0.04 0.18 -0.41 0.71 0.04 0.03 0.85 0.30 0.05 0.77
Hete

We also conducted experiments to compare the hameogs model and the
heterogeneous model. To specifically measure tieeimce of the model on the
registration, we employ the multi-tissue mesh, la@as in Fig. 2 a), in both
models. As a result, the influence of the discregaf the geometry and topol-
ogy between single mesh and multi-tissue mesh eaaliminated. The only
difference between the two models is the biomedadhaittributes of the ventri-
cle. The homogeneous model uses Young’'s modHdlus 3000Pa, Poisson’s
ratio v = 0.45 for all tetrahedra, and the heterogeneouwehreplaces Young’'s
modulus withE = 10Pa and Poisson’s ratio wittx 0.1 for the ventricle [15].
We compared the two models regarding edge poirtts MD as the measure-
ment. The evaluation results show the magnitudeamgment brought by the
heterogeneous model is not large, but statisticagpificant (Two tailed t test,
P-value 0.04).

4. Conclusion and Future Work

We present a novel non-rigid registration method¢ddmpensate for brain de-
formation induced by tumor resection. This methoésinot require the point
correspondence to be known in advance, and allogvgput data to be incom-
plete, thus producing a more general point-baseB.NR

This method uses strain energy of the biomechamcalel to regularize the so-
lution. To improve the fidelity of the simulatiori the underlying deformation

field, we build a heterogeneous model based on l&-tiesue mesher. To re-

solve the deformation field with unknown correspemck and resection region,
we develop a Nested EM framework, which can eftetyi resolve these three
variables simultaneously.

The heterogeneous model, embedded in the propeggstration method, can
incorporate as many tissues as possible. In thik,wee use a simple two-
tissue model to perform the evaluation. Comparedgid registration, the pro-
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posed method can significantly improve the accur@ompared to the homo-
geneous model, the improvement of the accuracyghitdoy the heterogeneous
model is statistically significant. We believe asretissues are incorporated
into the model, such as the falx of the brain,ithprovement of the accuracy
regarding the magnitude will become noticeable.
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