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In this paper we present a non-rigid registration method to align pre-operative MRI (preMRI) 
with resected intra-operative MRI (iMRI) to compensate for brain deformation during tumor re-
section. This method formulates the registration as a three-variable (point correspondence, de-
formation field and resection region) functional minimization problem, in which point corre-
spondence is represented by a fuzzy assign matrix, deformation field is represented by a piece-
wise linear function regularized by the strain energy of a heterogeneous biomechanical model, 
and resection region is represented by a maximal connected tetrahedral mesh. A Nested Expec-
tation and Maximization framework is developed to simultaneously resolve these three vari-
ables. This method accommodates a heterogeneous biomechanical model as the regularization 
term to realistically describe the underlying deformation field, and allows the removal of the te-
trahedra from the model to simulate the tumor resection. A simple two tissue heterogeneous 
model (ventricle plus the rest of the brain) is used to evaluate this method on 14 clinical cases. 
The experimental results show the effectiveness of this method in correcting the deformation 
induced by resection. The comparison between the homogeneous model and the heterogeneous 
model demonstrates the statistical significance of the improvement brought by the heterogene-
ous model (P-value 0.04). 

1. Introduction 
Brain shift severely compromises the fidelity of Image-Guided Neurosurgery 
(IGNS). Most studies use a biomechanical model to estimate the brain shift 
based on sparse intra-operative data after the dura is opened [1-3]. Very few 
studies in the literature address brain deformation during and after tumor resec-
tion. The difficulty originates from the fact that resection creates a cavity, 
which renders the biomechanical model defined on pre-operative MRI inaccu-
rate due to the existence of the additional part of the model corresponding to the 
resection region. In this work, the model accuracy will be improved by 1) re-
moving the tetrahedra in the model corresponding to the resection region and 2) 
building a heterogeneous biomechanical model, which is facilitated by our mul-
ti-tissue mesh generation method [4].  
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In [5], Miga et al. investigated tissue retraction and resection using sparse Op-
erating Room (OR) data and a finite element model. They developed a two-step 
method: 1) remove tissue volume by manual deletion of model elements that 
coincide with the targeted zone and then 2) apply boundary conditions to the 
new surfaces created during the excision process. Determining the cavity is 
challenging because a portion of it will be filled by surrounding tissues [6]. Our 
method eliminates the manual removal step by treating the resection region as a 
variable, which is able to be automatically resolved by a Nested Expectation 
and Maximization (EM) framework, an extension of traditional EM optimiza-
tion [7]. Based on the bijective Demons algorithm, Risholm et al. presented an 
elastic FEM-based registration algorithm and evaluated it on the registration of 
2D pre- with intra-operative images, where a superficial tumor has been re-
sected [8].  Ding et al. [6] presented a semi-automatic method based on post-
brain tumor resection and laser range data. Vessels are identified in both pre-
operative MRI and laser range image; then the Robust Point Matching (RPM) 
method [9] is used to force the corresponding vessels to exactly match each 
other under the constraint of the bending energy of the whole image. RPM uses 
Thin-Plate Splines (TPS) as the mapping function.  The basis function of TPS is 
a solution of the biharmonic [10], which does not have compact support and 
will therefore lead to, in real application, unrealistic deformation in the region 
far away from the matching points. In other words, RPM is not suitable for es-
timating deformation using sparse data.  We use a heterogeneous biomechanical 
model to realistically simulate the underlying movement of the brain, which ex-
tends our previous work using a homogeneous model [19]. 
 
In this work, we target the specific feature point-based non-rigid registration 
(NRR) problem, which can be stated as: 
Given a heterogeneous patient-specific brain model, a source point set in pre-
operative MRI and a target point set in intra-operative MRI, find point corre-
spondence, deformation field and resection region.  
To resolve this problem, the three variables are incorporated into one cost func-
tion, which is minimized by a Nested EM strategy. The deformation field is 
represented by a displacement vector defined on the mesh nodes, the corre-
spondence between two point sets is represented by a correspondence matrix, 
and the resection region is represented by a connected submesh.  
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2. Method 
In this section, we first develop the cost function step by step from a simple 
point-based non-rigid registration cost function to the three-variable cost func-
tion, and then present a Nested Expectation and Maximization framework to re-
solve it. 

2.1 Cost Function 
Given, a source point set 3
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with known correspondence, i.e., is  corresponding to it , the point-based non-

rigid registration problem can be formulated as: 
 

))()((minarg
2

∑∫
Ω∈Ω

−++Ω=
is

iii
u

tsusduRu λ                         (1) 

 
where the first term is regularization or smoothing energy, and the second term  
is similarity energy. u is the deformation field, and λ  controls the trade-off be-
tween these two energies. Ω  is the problem domain, namely the segmented 
brain. The removed tumor influences Ω , and therefore influences both terms in 
equation (1). We extend equation (1) to equation (2) by specifying the regulari-
zation term with the strain energy of a linear elastic model, removing the limita-
tion of correspondence between S  and T , and accommodating tumor resection. 
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where variable 'Ω  represents the resection region, and variable ijc  reflects the 

degree to which point is  corresponds to jt . The ijc  is defined as in RPM [9] 

with soft assignment. The Classic Iterative Closest Point (ICP) method [11] 
treats the correspondence as a binary variable and assigns the value based on 
the nearest-neighbor relationship. However, this simple and crude assignment is 
not valid for non-rigid registration, especially when large deformation and out-
liers are involved [18]. We define a range RΩ , a sphere centered at the source 
point with radius R , and only take into account: 1) the target points, which are 
located in RΩ  of the source point, and 2) the source points, which have at least 
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one target point in RΩ . Thus, with this simple extension of RPM, our method is 
capable of eliminating outliers existing in both point sets. The first two terms 
come from the extension of equation (1), and the last term is used to prevent too 
much regions from being rejected. 
The homogeneous model employed in the regularization term in equation (2) is 
further extended to the following heterogeneous model: 
 

∫∫∫∑ ∑

∑ ∫

ΩΩ−Ω∈ Ω∈

Ω−Ω∈Ω ΩΩ

+−+

+Ω=Ω

'

2
'

2
1

'',,

)||)(||

)()((minarg)',,(

dxdydztcsus

duucu

i Rj

i i
ij

s
j

t
ijii

iii
cu

ij

λλ

εσ
                                     (3) 

where ....1 ,' nii =Ω−Ω=ΩU  

 
Remark If Emptyn =Ω= ' ,1 , and 1=ijc  then equation (3) is reduced to equa-

tion (1), which means the proposed method can be viewed as a general point 
based NRR method characterized by 1) employing a heterogeneous biome-
chanical model as the regularization, 2) accommodating incomplete data, and 3) 
without correspondence requirement.  
Equation (3) is approximated by equation (4) using finite element method: 
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spondence matrix with entries ijc . The equation to calculate ijc will be given 

later. The entries of the vector D  are defined as: 

∑ Ω∈
∈∀−=

Rjt mijijiiji MMstcscd Re\ ,)( , where M  is the non-resected mesh that 

approximates Ω , and mM Re  is the removed mesh that approximates 'Ω . The 

first term of equation (4) is the strain energy assembled on all elements in 

mMM Re\ , the second term is similarity energy defined on all source points 

mi MMs Re\∈ , and the third term prevents too much tetrahedral from being re-

jected. 
W  in the second term is a weighted matrix of size SS 33 × . W  is a block-

diagonal matrix whose 33× submatrix kW  is defined as avg
kS

m S ,  where m  is the 
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number the vertices of the mesh. 
S
m  makes the matching term independent of 

the numbers of the vertices and the registration (source) points. avg
kS  is the av-

erage stiffness tensor for k -th registration point. avg
kS  makes the registration 

point behavior like an elastic node of the finite element model. Assume the k -
th registration point is located in the tetrahedron defined by vertices 

].3:0[ , ∈ici
avg
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= 3

0i ici
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k KhS , where 

icK  is a 33×  sub-

matrix of the global stiffness matrix K . ih  is the interpolation factor, the ele-

ment of the global linear interpolation matrix H [16].   
Finding C  and mM Re  is equivalent to outlier rejection.  We developed a Nested 

Expectation and Maximization method to iteratively reject point and element 
outliers. 
 
2.2 Nested Expectation and Maximization 
The Expectation and Maximization (EM) algorithm [7] is a general algorithm 
for maximum-likelihood [13] estimation of the model parameter (unknowns) in 
the presence of missing or hidden data. EM proceeds iteratively to estimate the 
model parameters. Each iteration of the EM algorithm consists of two steps: 
The E step and the M step. In the E step, the missing data is estimated given the 
observed data and current estimate of the model parameters.  In the M step, the 
likelihood function is maximized under the assumption that the missing data is 
known. The estimate of the missing data from the E step is used in lieu of the 
actual missing data. Convergence is assured since the algorithm is guaranteed 
to increase the likelihood at each iteration [7]. 
The proposed Nested EM framework is shown in Fig.1. The inner EM is used 
to resolve CU ,  with mM Re  fixed, and the outer EM is used to resolve mM Re . 

mM Re  is approximated as a collection of tetrahedra located in a region of the 

model, which corresponds to the resection region in the intra-operative MRI. 

mM Re  is initialized as empty and updated at each iteration of the outer EM. If 

all the tetrahedra contained in the resection region are collected, the outer EM 
stops.  
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Figure 1. Nested Expectation and Maximization Framework 

 
2.2.1 Inner EM 
Inner EM is used to resolve CU ,  given mM Re .  

For each source point is , assume its correspondences are subject to Gaussian 

distribution, so ijc  can be estimated (E step) by equation (5). 
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Once C  is estimated, U  can be resolved by solving the minimization equation 
obtained by setting the derivative of functional (4) to zero, i.e., 0/ =dUdJ  . 

2λ can be ignored because the last term becomes a constant. The resolved U  is 
used to warp S  closer to T , and then the correspondence C  is estimated again. 
The pseudo code of the inner EM is presented in Alg. 1. 
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Alg. 1: Feature Point Outlier Rejection (inner EM) 

 
2.2.2 Outer EM 
Outer EM is used to find mM Re . In M step, CU ,  is resolved by the inner EM. 

In E step, mM Re  is resolved by an element outlier rejection algorithm. mM Re  is 

approximated by a collection of tetrahedron outliers, which fall in the resection 
region of the intra-operative MRI.  The resection region does not need to be 
identified in the intra-operative MRI, and it is in fact impossible to distinguish 
the resection region from the background. The Background Image BGI  includ-
ing the resection region and the background can be very easily segmented by a 
simple threshold segmentation method. However, we cannot determine if a tet-
rahedron is an outlier based only on whether it is located in the BGI  because 
this tetrahedra might happen to fall in the background rather than the resection 
region. To make the element outlier rejection algorithm robust, we utilize the 
fact that the resection region is a collection of tetrahedra, which not only fall in 
the BGI  of intra-operative MRI, but also connect with each other and consti-
tute a maximal connected submesh.  The collection of the outliers proceeds it-
eratively, and at each iteration, more specifically the E step of outer EM, addi-
tional outliers will be added into mM Re  if they fall in the BGI  and connect with 

the maximal connected submesh identified in previous iteration. 
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The element outlier rejection algorithm is presented in Alg. 2. 
 

 
Alg. 2: Element Outlier Rejection 

 
The outer EM iteratively rejects element outliers using Alg. 2 and computes 

CU ,  using Alg. 1 until no additional element outliers are detected. Alg. 3 

presents the whole pseudo code of the Nested EM algorithm. 
 

 
Alg. 3: Nested Expectation and Maximization 
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3. Results 
We conducted experiments on 14 clinical cases using MRI data, which were 
acquired with the protocol: T1-weighted magnetization-prepared rapid gradient 
echo (MPRAGE) sagittal images with [dimension = 256 × 256 × 176, in plane 
resolution = 1.0 × 1.0 mm, thickness = 1.0 mm, FOV = 256 × 256].  
Fig. 2 a) shows the multi-tissue mesh we used to build the heterogeneous model.  

 

Figure 2. a) Multi-tissue mesh: brain and ventricle. b) Deformation field of resected heteroge-
neous model. 

 
Fig. 2 b) shows the result of element outlier rejection produced by Alg. 2 and 
the deformation field of the heterogeneous model. A portion of the brain is cut 
off to expose the ventricle and its deformation field. The largest deformation 
reaches 18.2 mm, still in the effective range of the linear elastic biomechanical 
model. The larger deformation occurs in the region near the resection, and the 
ventricle on the tumor side is squeezed inward as the arrows show.  
 
Fig. 3 shows the results of point outlier rejection produced by Alg. 1. Compar-
ing to the edges before outlier rejection, most point outliers are removed after 
outlier rejection.   
 
Fig. 4 shows the results of the Nested EM method. We superimpose edges de-
tected on iMRI onto preMRI and warped preMRI, respectively, to illustrate the 
improvement of the boundary matching after registration. 
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Figure 3. Point outlier rejection. The blue points are edge detected by canny edge detection. The 
top two figures are edge points before outlier rejection. The bottom two figures are remaining 
edge points after outlier rejection.  
 

 
Figure 4. Qualitative evaluation regarding canny edges. The blue points are edge detected by 
canny edge detection on iMRI. The detected edge points are superimposed on the preMRI (left) 
and warped preMR (right). 
 
To quantitatively evaluate the proposed method, Hausdorff Distance (HD) [17] 
is employed as the measurement of the registration accuracy. We use outlier re-
jected edge points in preMRI and iMRI to calculate HD before non-rigid regis-
tration (after rigid registration), and use outlier rejected edge points in iMRI and 
warped preMRI to calculated the HD after registration. Both homogeneous 
model and heterogeneous model are used for the registration. As shown in Ta-
ble 1, both models can significantly improve the accuracy. 
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Table 1. Quantitative evaluation of Nested EM NRR regarding edge points using HD for 14 
cases. “Rigid” denotes the error after rigid registration, “Homo” denotes the error after non-
rigid registration using a homogeneous model, “Hete” denotes the error after non-rigid registra-
tion using a heterogeneous model, and the “Homo-Hete” denotes the improvement brought by 
the heterogeneous model. The unit of the error is mm. 0.11 =λ . R=10.0mm. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Rigid 8.31 9.27 15.43 11.70 11.49 9.85 12.69 2.12 10.34 13.30 14.28 13.64 13.60 15.26 

Homo 1.17 1.12 1.54 1.22 1.62 1.50 1.54 2.12 1.54 1.88 3.81 3.96 2.19 2.95 

Hete 1.13 1.06 1.33 1.14 1.58 1.32 1.95 1.41 1.50 1.85 2.96 3.66 2.14 2.18 

Homo-  
Hete 

0.04 0.06 0.21 0.08 0.04 0.18 -0.41 0.71 0.04 0.03 0.85 0.30 0.05 0.77 

 
We also conducted experiments to compare the homogeneous model and the 
heterogeneous model. To specifically measure the influence of the model on the 
registration, we employ the multi-tissue mesh, as shown in Fig. 2 a), in both 
models. As a result, the influence of the discrepancy of the geometry and topol-
ogy between single mesh and multi-tissue mesh can be eliminated. The only 
difference between the two models is the biomechanical attributes of the ventri-
cle. The homogeneous model uses Young’s modulus E  = 3000Pa, Poisson’s 
ratio ν = 0.45 for all tetrahedra, and the heterogeneous model replaces Young’s 
modulus with E  = 10Pa and Poisson’s ratio with ν = 0.1 for the ventricle [15]. 
We compared the two models regarding edge points with HD as the measure-
ment. The evaluation results show the magnitude improvement brought by the 
heterogeneous model is not large, but statistically significant (Two tailed t test, 
P-value 0.04). 

4. Conclusion and Future Work 
We present a novel non-rigid registration method to compensate for brain de-
formation induced by tumor resection. This method does not require the point 
correspondence to be known in advance, and allows the input data to be incom-
plete, thus producing a more general point-based NRR. 
This method uses strain energy of the biomechanical model to regularize the so-
lution. To improve the fidelity of the simulation of the underlying deformation 
field, we build a heterogeneous model based on a multi-tissue mesher. To re-
solve the deformation field with unknown correspondence and resection region, 
we develop a Nested EM framework, which can effectively resolve these three 
variables simultaneously. 
The heterogeneous model, embedded in the proposed registration method, can 
incorporate as many tissues as possible. In this work, we use a simple two-
tissue model to perform the evaluation. Compared to rigid registration, the pro-
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posed method can significantly improve the accuracy. Compared to the homo-
geneous model, the improvement of the accuracy brought by the heterogeneous 
model is statistically significant. We believe as more tissues are incorporated 
into the model, such as the falx of the brain, the improvement of the accuracy 
regarding the magnitude will become noticeable.  
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