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 Abstract - Cryo-electron Microscopy (cryoEM) is an 
important biophysical technique that produces 3-dimensional 
(3D) images at different resolutions. De novo modeling is 
becoming a promising approach to derive the atomic structure of 
proteins from the cryoEM 3D images at medium resolutions. 
Distance measurement along a thin skeleton in the 3D image is an 
important step in de novo modeling. In spite of the need of such 
measurement, little has been investigated about the accuracy of 
the measurement in searching for an effective method.  We 
propose a new computational geometric approach to estimate the 
distance along the skeleton. Our preliminary test results show 
that the method was able to estimate fairly well in eleven cases. 
This method is also able to detect outliers in the Electron 
Microscopy Data Bank in which the loops do not match the 
skeletons very well.  
 
 Skeleton, computational geometry, electron microscopy, 
protein, length 
 

I.  INTRODUCTION 

Electron cryo-microscopy (cryoEM) continues to produce 
3-dimensional (3D) images of large protein complexes with a 
wide range of resolutions from about 3Å to over 80Å. 
However, only an extremely small portion of such 3D images 
has been resolved to the atomic structures [1]. De novo 
modeling has been demonstrated as a promising method to 
derive atomic protein structures from a 3D image at the 
medium resolution, such as 5-10Å [2-­‐4]. De novo modeling is 
a general method that does not rely on the availability of a 
template structure in the Protein Data Bank (PDB). Figure 1 
illustrates the major steps in de novo modeling to generate an 
initial atomic structure. The input information includes the 3D 
image, called the protein density map, and the amino acid 
sequence of the protein. It uses image processing methods to 
detect the secondary structures such as helices (red sticks in 
Figure 1) and β-sheets in the 3D image [5-10]. It uses 
skeletonization methods to detect the skeleton connection 
(green in Figure 1) in the 3D image [4, 11]. It uses secondary 
structure prediction tools to determine their location on the 
protein sequence [12-15]. The topology of the secondary 
structures can be inferred by combining the two sources of 
information about the secondary structures, one from the 3D 
image and the other from the protein sequence [2, 16]. Once 
the topology of the secondary structures is determined, the 
atomic structure will be modeled.  

  

 
 
 
 
 
 
 
 
 
A protein sequence has a direction, from the N-terminal to 

the C-terminal. When the protein sequence is threaded in the 
3D image, it visits the detected helix sticks in a unique order. 
The determination of this order is the topology problem. The 
topology of the Secondary Structure Elements (SSEs) is a 
critical piece of information in protein structure prediction. It 

Figure 1: The de novo modelling approach. The two inputs 
are the protein SSEs on the sequence and the 3D image 

(density map) at medium resolution. The helices (red sticks) 
were detected using SSELearner [10] and the skeleton (green) 
was detected using Gorgon [4]. The protein structure is shown 

as a ribbon (purple). 
 



has been demonstrated that the topology of the helix sticks can 
be derived using graph-matching approaches[16] [2]. Our 
previous work translated the graph-matching problem into a 
constrained shortest path problem in a topology graph. We 
presented a dynamic programming algorithm in O(N22N) time 
[2]. The idea of topology determination is to use the distances 
between the SSEs as a metric in matching. For example, two 
helices 5Å  apart  in  the  3D  image  should  be  matched  to  two  
helices   of   similar   distance   in   the   protein   sequence.   The  
distance  between  two  helices  on  the  amino  acid  sequence  
can   be   translated   into   the   distance   in   3D   space   by  
assuming  a  3.8Å  distance  between  two  consecutive  amino  
acids  on  the  sequence.  The  assumption   is   that   the  correct  
topology  results  in  the  overall  best  match  when  all  pairs  of  
helices  are  considered.    
 

Skeletonization of the 3D image has been shown to be an 
important technique to extract the connections between the 
SSEs. The skeleton can be derived using thinning and pruning 
methods [17]. It roughly represents the major paths in the 3D 
image. The skeleton is a set of grid points, or voxels, along the 
paths that appear to zigzag. Ideally, the distance between two 
specific ends of two helices should be measured along the 
skeleton connecting the two ends. If we simply add the length 
of the line segments along the path, there is a danger of over 
estimation due to the potential zigzag nature of the path. 
Moreover, the skeleton is expected to contain errors, since the 
3D image often contain errors. It is not clear if the skeleton 
length estimation methods are accurate enough for topology 
determination.    

 
This paper introduces a new method to approximate the 

distances between the detected SSEs from a density map, for 
use in the matching algorithm. In particular, we measure the 
length along the skeleton using a combination of graph-
theoretic and computational geometric methods.  We tested 
the method using a small dataset consisting of the 
experimentally derived 3D images from the Electron 
Microscopy Data Bank. The measured length appears to agree 
with the expected length when the atomic structure of the turn 
aligns well with the skeleton.  In our future work we expect to 
perform an extensive evaluation of the algorithm and fine tune 
it accordingly. 

 

II.  METHODOLOGY 

Problem: estimate the skeleton length connecting two helices 
in the 3D image.  
The solution, which is an approximation, is described in the 
flow chart in Figure 2. There are three basic steps: (1) pre-
process the skeleton, (2) construction of the trees and paths, 
and (3) decimation of  the  paths  derived from step (2).  
 
A. Processing of the Skeleton 
 First, we apply the skeletonization method using Gorgon 
[4]. An example of the skeleton is shown in green in Figure 1. 
The skeleton produced by Gorgon and includes the helix 

region. In order to estimate the length of the portion of the 
skeleton that corresponds to the turn of the atomic structure, 
we need to mask out the portion within the helix.   
 

 
Figure 2: Algorithmic flow of the different components to 

calculate the piecewise linear approximation. 
 

In theory, we can use  a tool, such as SSELearner, to detect the 
position of the helices [10]. In this work, we used the true 
location of the helices obtained from the PDB file. Since this 
is the initial test about the estimation of the skeleton length, 
we hope to test the accuracy when the helices are accurately 
detected. We plan to use the detected helix positions in the 
future. We removed the skeleton that falls in a cylinder of 5Å 
in diameter at the helix. The centers of the two ending circles 
are determined by the geometrical center of the first three and 
the last three Cα atoms on the helix.  After removal, what is 
left is the set of skeleton voxels corresponding to the protein 
backbone not found in any secondary structures. These parts 
of the backbone are the turn / loops that connect two adjacent 
helices on the sequence 
 
B. Graph Theoretic Approach  
 Virtually every approximating method requires that the 
input data points be ordered in some way. However, the 
skeleton points are those grid points (voxels) in 3D without 
any order. Our first step is to construct a connected graph of 
the skeleton voxels. Then we construct the minimal spanning 
tree (MST) using Cormen’s implementation of Prim’s 
algorithm [18].  Without loss of generality we use arbitrary 
edges of the MST to describe the path of the turn, so we must 
throw out the outlying branches and create a piecewise linear 
curve. However, we need to eliminate the minimum amount of 
data points to preserve as much information as possible. In 
addition, we determine this path without any other inputs, such 
as helix endpoints, because they can lie some distance inside 
the helix area, spuriously adding length to the approximation. 
To find the path in this way, we use the Floyd-Warshall 
algorithm (again implemented by Cormen in [18]) to compute 
all-pairs shortest paths in the MST, and reconstruct the longest 
such path, which we refer to as the all-pairs longest [simple] 
path (APLP). Conveniently, the APLP implies an order on the 
points it contains for use in the actual approximating step. 

 



C. Computational Geometric Approach 
An artifact directly related to the initial skeleton construction 
is that our APLP contains right angles at the skeleton voxels, 
giving it the undesired zigzag appearance. This introduces a 
margin of error in length when compared to the relatively 
smooth curve of the protein backbone. To overcome this, we  
 

 
Figure 3: Illustration of the Douglas-Peucker polyline 

decimation algorithm at work in a 2D case. 
 
simplify the line by removing certain points using the 
Douglas-Peucker line simplification, generalized to three 
dimensions by modifying de Halleux’s implementation given 
in [19]. 
 
 The Douglas–Peucker line decimation algorithm [6] 
allows us to remove points from a piecewise-linear three-
dimensional line (referred here as polyline), such that the 
resulting polyline remains within some tolerance epsilon ε 
from the original one. Consider a two-dimensional example in 
Figure 3. The top drawing shows an initial polyline a...b. Its 
points are chosen from a rectilinear grid, and therefore the 
total length of the polyline a...b overestimates a smoother line 
that could connect points a and b and pass through the same 
geometrical neighborhood. The algorithm is recursive, and 

takes as parameters the tolerance ε and a multi-point segment 
of a polyline (which is initially the original polyline). At each 
recursive call it finds an interior point of the current segment 
which is the most distant from the straight line connecting the 
end points of the segment. If the most distant point is within ε 
from the straight line, the segment is replaced by the straight 
line, and all interior points are removed. Otherwise, the 
segment is split into two sub-segments by this most distant 
interior point, and the algorithm proceeds recursively on each 
of the sub-segments. The example in the Figure shows how 
the initial polyline a...b is simplified into polyline aceb. Figure 
4 shows the result of decimating an APLP from a test case in 
three dimensions with ε = 1.0. 
 

 
Figure 4: The MST (blue), APLP (green) and decimate curve 

approximation (red) for a 3-residue turn in EMDB_5001.  
 

III. RESULTS 

 We used the 3D images from EMDB and their 
corresponding atomic structures from PDB to test our method. 
The 3D images in EMDB are experimentally derived, and 
provide test cases of the real experimental data. We selected 
five density maps from EMDB with different resolutions. 
These data include EMDB5030_6.4Å, EMDB1733_6.8Å,  
EMDB_5001_4.2  Å,  EMDB1740_6.8  Å,  and  EMDB_5168_6.6  
Å. Each of these 3D images is aligned with their PDB 
structures at download. We extracted turns less than seven 
amino acids in length from the PDB file and extracted the 
corresponding local regions around the turn connected by two 
helices. We obtained the skeletons using Gorgon and 
processed the skeleton so that those inside the cylinder of the 
helices are deleted leaving the portion belonging the turns. We 
measured the length of the processed skeleton and compared it 
with the expected length of the turn. The expected length of 
the turn is calculated by the number of the amino acids on the 
turn with the consideration of 3.8Å in between two amino 
acids.  

A. ε Threshold  
  ε is one of the major parameters in the Douglas-Peucker 
algorithm affecting the approximated skeleton length between 
two helices. In general, the smaller the ε value, the less change 
in the decimated curve compare to the original one. Figure 5 
shows the skeleton length measured using different ε values in 
the range [0.5, 3.5].  The length corresponds to the 3-residue 
turn in EMDB 1733. In this case, ε = 0.75 produces the closest 
approximation to the actual loop length (see case 3 in Table 
1).  For all the cases in our current test, a value of ε between 
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0.5 and 1.0 produces an approximated length very near to the 
expected length of the turn, as illustrated in Figures 6 and 7.  

 
Figure 5: ε values of the Douglas-Peucker method.  

 
Figure 6 shows an example of decimated curve for the 3-

residue turn (row 4 of Table 1). The skeleton derived from 
Gorgon was shown as the surface representation using 
Chimera [20]. The skeleton was superimposed on the 
backbone Cα trace of the protein, obtained from the PDB file. 
In this case, the backbone chain appears to fit in the skeleton 
fairly well at the turn region (green). The central end point 
(yellow) of the helix was estimated using the geometrical 
center of the last three Cα atoms on the helix. After the 
removal of the helix portion of the skeleton, the MST was 
built to find the APLP (purple). The skeleton length 
corresponding to the turn was estimated using the decimated 
curve (dark blue) to be 11.11Å. It is fairly close to the 
estimated distance of 11.4Å.    
  

Table 1 summarizes the testing results. The length-3 turns 
dominate with eight out of eleven test cases. Somehow the 
length-3 turns are more popular than other kinds of turns 
among the helix-turn-helix motif. If we use the ε value 
(column 4 of Table 1) that produces the closest estimation 
with respect to the true length, the approximated skeleton 
length (column5) is fairly close to the expected length with the 
difference between 0.14Å to 1.32Å (column 7). This result 
suggests that it is possible to estimate the length of the turn 
using the skeleton length at least for the length-3 turns. These 
results support the previous finding of our group and other 
groups in terms of the use of graph matching for topology 
determination. Our preliminary test here shows that there is a ε 
value that produces close estimation of the skeleton length for 
certain type of turns. When the turn is even shorter, having 
one amino acid, our current estimation still gives reasonable 
accuracy (row 1 and 2 of Table 1). However, the ε value varies 
more in the case of length-3 turns. We need more test cases for 
the other lengths to make a conclusion.    
 

 
Figure 6: The decimated curve (dark blue) for ε = 0.75 for the 
3-residue loop in EMDB 1733, along with the APLP (purple), 

skeleton surface (grey) and its voxels (red), turn (green), 
helices (cyan) and estimated helix endpoints (yellow). 

  

 
Table 1: Results of approximation. 

No IDa AAb εc  Approxd Reale Difff 
1 5138 1 0.5 5.32 3.8 1.52 
2 5030 1 1.0 4.077 3.8 0.277 
3 1733 3 0.5 10.95 11.4 0.45 
4 1733 3 0.75 11.11 11.4 0.33 
5 5001 3 0.75 11.88 11.4 0.48 
6 5001 3 0.5 11.66 11.4 0.26 
7 5030 3 0.5 11.34 11.4 0.14 
8 5030 3 0.75 11.73 11.4 0.33 
9 5001 3 0.5 12.72 11.4 1.32 

10 5168 4 0.5 15.2 6.92 8.28 
11 1740 6 0.5 21.89 22.8 0.91 

a: EMDB ID. 
b: Number of amino acids in the turn. 
c: Douglas-Peucker epsilon value used to derive the 
approximating curve. 
d: Actual length of the turn. For a turn with n residues, the 
length l is assumed to be l = n * 3.8Å. 
e: Approximated skeleton length 
f: Difference between actual and approximated lengths. 
 
 The cases in Table 1 (except case 10) all have a skeleton 
that aligns well with the actual protein backbone throughout 
the loop. However, in some cases we see that the skeleton is 
not aligned well with the backbone chain of the loop. 
Sometimes it lies inside the loop, producing a shorter 
approximated length than the expected length.  The skeleton 
for case 10 lies inside the actual protein backbone (Figure 7), 
leading to the large approximation error. Further study on the 
relationship between distances of skeletons to backbones and 
the approximated lengths is needed, as well as investigation of 
skeletonization, which is outside the scope of this paper. 
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Figure 7: An: example of mis-aligned skeleton and the 

backbone of the turn (case 10 from Table 1), producing an 
erroneously short approximation of the loop length.  

 

IV.  SUMMARY 

 We have investigated the question how accurate it can be 
to estimate the skeleton length between two helices. Although 
the skeleton length has been used in topology determination, 
there has not been a detailed study in the computation of a 3D 
curve that closely approximates the skeleton of the image. We 
propose an effective method in estimating the skeleton length 
using a decimated curve. A test of eleven cases using the 
experimentally derived data shows that the estimation can be 
potentially accurate to a fair degree if the backbone of the 
protein chain fits in the skeleton. This was demonstrated well 
for the helix-turn-helix motif with three amino acids on the 
turn. Our method can detect the turns in which the turn is 
outside the skeleton. We plan to carry further investigation in 
this direction.  
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