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Abstract. Mesh generation on 3D segmented images is a fundamental
step for the construction of realistic biomechanical models. Mesh ele-
ments with low or large dihedral angles are undesirable, since they are
known to underpin the speed and accuracy of the subsequent finite el-
ement analysis. In this paper, we present an algorithm for meshing 3D
multi-label images. A notable feature of our method is its ability to
produce tetrahedra with very good dihedral angles respecting, at the
same time, the interfaces created by two or more adjoining tissues. Our
method employs a Delaunay refinement scheme orchestrated by special
point rejection strategies which remove poorly shaped elements without
deteriorating the representation of the objects’ anatomical boundaries.
Experimental evaluation on CT and MRI atlases have shown that our al-
gorithm produces watertight meshes consisting of elements of very good
quality (all the dihedral angles were between 19 and 150 degrees) which
makes our method suitable for finite element simulations.

1 Introduction

Meshing multi-labelled medical images (like those obtained by segmenting MRI
or CT images) provides the means for constructing accurate bio-mechanical mod-
els for subsequent finite element analysis. Multi-material mesh generation im-
poses challenges, since it should meet two conflicting requirements: fidelity and
quality.

Fidelity measures the capability of the mesher to preserve the boundaries
formed by two or more adjoining tissues. Quality regards the shape of the el-
ements: tetrahedra with small or large dihedral angles (i.e., low quality tetra-
hedra) result in interpolation errors and in ill-conditioned stiffness matrices un-
dermining in this way the accuracy and speed of the associated finite element
analysis [1].

The difficulty in mesh generation is that the need to preserve high-curvature
creases of the object’s surface (i.e., high fidelity) deteriorates the quality of the
meshes; on the other hand, the quality of mesh elements should be as high as
possible when dealing with isotropic materials [2].
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In this paper, we propose a Delaunay meshing algorithm able to respect
the interfaces of multi-material domains and produce tetrahedra with very good
dihedral angles and radius-edge ratios (and therefore very good aspect ratios),
offering at the same time control over the size of the mesh.

1.1 Previous work

In the literature, there has been work on multi-tissue meshing but the issue of
high quality has not been adequately addressed.

Meyer et al. [3] employ a particle-based scheme producing watertight meshes
that respect the interfaces formed by adjoining tissues. However, elements with
practically zero dihedral angles (slivers) do appear in the final meshes. Further-
more, the execution times reported range from 3 to 12 hours even for small
datasets.

Liu et al. [4] compress a body-centered cubic lattice (BCC) using a point-
based registration method. The dihedral angles, however, can be as low as 4◦.
Also, the uniform lattice results in an unnecessary large number of elements in
the interior of the objects.

Chentanez et al. [5] model the insertion of needles into soft tissues. The
resulting conforming meshes are observed to consist of elements of angles more
than 10.3◦ and less than 160◦. It is worth noting that their goal is to represent a
1-dimensional curvilinear object (the needle) as a subset of a single-tissue mesh,
which is a goal quite different from ours.

Goksel and Salcudean [6] present a variational meshing technique which com-
bines both meshing and segmentation. They report minimum angles as large as
20◦. The synthetic data they used for the evaluation is a sphere, that is, a 2-
manifold. Usually, multi-tissue domains consists of complicated geometries, i.e.,
non-manifold parts which intersect with more than one tissues. These domains
impose challenges to any meshing technique and are the focus of this work.

Zhang et al. [7] develop an octree-based meshing algorithm. Although edge-
contraction and smoothing schemes are employed for quality improvement, the
authors do not report the dihedral angles observed in their meshes.

Hu et al. [8] and Hartmann and Kruggel [9] develop uniform meshes for multi-
material domains achieving dihedral angles more than 10◦, albeit without good
fidelity: their meshes suffer from the “staircase” effect.

Based on previous work on single material Delaunay surface [10] and volume
meshing [11], Pons et al. [12] present a meshing algorithm for multi-tissue do-
mains. Recently, Boltcheva et al. [13] extend the work of Pons et al. [12], so that
0- and 1-junctions are preserved in the final meshes. Both these methods apply
sliver exudation [14] in order to improve the quality of the mesh. Edelsbrunner
and Guoy [15], however, have shown that in most cases sliver exudation does not
remove all poor tetrahedra: elements with dihedral angles less than 5◦ survive.
Indeed, Pons et al. [12] and Boltcheva et al. [13] report dihedral angles as low as
4◦.
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1.2 Our contribution

In this paper, we present a Delaunay refinement algorithm for meshing multi-
tissue medical data so that the boundaries between neighboring tissues are con-
forming. It works directly on segmented images meshing both the surface and
the volume of the tissues.

A notable feature of our method is its ability to produce tetrahedra with
very good dihedral angles: in all the experiments on synthetic and real images
we ran, our algorithm produces watertight meshes consisting of tetrahedra with
dihedral angles larger than 19◦ and smaller than 150◦.

The technique we employ for quality improvement is inspired by the work of
Shewchuk [16]. Therein, poor tetrahedra are eliminated by inserting the center
of their circumball, giving priority to tetrahedra with larger radius-edge ratio.
Shewchuk, however, meshes input domains bounded by polyhedral surfaces. In
this paper, we extend this technique to deal with multi-tissue domains bounded
by curved surfaces. The main difficulty is that vertices near the surface might be
inserted during quality improvement. This fact in turn hurts fidelity: edges that
cross interfaces or holes appear. To overcome this problem, we propose special
point rejection strategies. They improve the quality of elements preventing the
insertion of points near the surface; rather, carefully chosen points are inserted
precisely on the surface. This allows to achieve both good quality and good
fidelity meshes.

The rest of the paper is organized as follows: Section 2 outlines the concept
of Delaunay refinement. The multi-tissue capability of our algorithm and the
point rejection strategies are described in Section 3. Lastly, Section 4 presents
results on CT and MR multi-label images and Section 5 concludes the paper.

2 Background

Delaunay meshes have been shown to successfully approximate the surface of
both manifold and non-manifold surfaces [10], due to the properties of the re-

stricted Delaunay triangulations, first introduced by Amenta and Bern [17].
Let V ⊂ R3 be a set of vertices and D (V ) their Delaunay triangulation. Any

Delaunay triangulation satisfies the empty ball property: the circumscribing open
ball (a.k.a circumball) of each tetrahedron in D (V ) does not contain any vertex.

The voronoi point of a tetrahedron t ∈ D (V ) is defined as the center (a.k.a
circumcenter) of t’s circumball. The voronoi edge of a triangle f ∈ D (V ) is the
segment containing those points of R3 such that (a) they are equidistant from
f ’s vertices and (b) they are closer to f ’s vertices than to any other vertex in V .

Let O be the multi-label domain to be meshed. We denote O’s surface with
∂O. The restriction of D (V ) to O (denoted with D|O (V )) is defined as the set
of tetrahedra in the triangulation whose circumcenter lies inside O.

It can be shown [10, 11] that if V samples ∂O sufficiently densely, then the set
of boundary triangles (a.k.a restricted facets) of D|O (V ) is a good approximation
of ∂O in a both topological and geometric sense. The approximation guarantees
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(a) (b) (c)

Fig. 1. (a) Sample set V of a liver’s surface. (b) The Delaunay triangulation D (V ) of
the samples. (c) The restricted triangulation D|O (V ).

hold as long as ∂O does not have sharp corners. This is a reasonable assumption,
since biological tissues do not exhibit sharp features on their surface. See Figure 1
for a single-tissue example. The same idea extends to more than one tissues as
well.

As an interesting consequence of the way D|O (V ) is defined, only the voronoi
edges of the restricted facets intersect the surface ∂O, a property that we will
exploit in Section 3 to improve quality.

3 Our method

The input of our algorithm is an image I containing the multi-material object
O. Image I can be seen as a function f : R3 7→ {0, 1, 2, . . . , n}, such that f (p)
is the label that point p ∈ R3 belongs to. More precisely, f (p) is the label of the
voxel that p lies in. Usually, a label of 0 denotes voxels outside O.

Points on the surface ∂O of object O are classified as those points lying in
a voxel of label i which is incident to at least one other voxel of label j, such
that i < j. In this way, surface ∂O contains not only the portions of the image
that separate O from the background, but it also contains the interfaces that
separate any adjoining tissues. The goal is to recover ∂O and mesh the volume
(induced by ∂O) at the same time.

Our algorithm first creates a box by inserting its 8 corners. The box contains
O such that the (shortest) distance between the box and ∂O is larger than
2δ
√
2. Parameter δ is the only parameter that the users have to specify. This

parameter determines how densely ∂O will be sampled: lower values indicate a
denser sampling which in turn implies a better surface approximation. Notice
that the calculation of the corners of the box is a quite trivial task, since it
requires just one image traversal.

Next, the Delaunay triangulation of these corners is computed. This triangu-
lation is the initial mesh (consisting of 12 tetrahedra) where the actual refinement
starts from.

The refinement is governed by 2 steps, namely, mesh conformity and point

rejection quality improvement. Upon termination, the tetrahedra whose circum-
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Fig. 2. (a) The closest surface point p to circumcenter c is inserted, (b) c is inserted
but p is not, (c)-(d) c does not lie inside the box and therefore it is not inserted. Its
projection c′ is inserted and the vertices closer than δ to c′ are deleted from the mesh.

center belongs to label i constitute the mesh representing the ith tissue. Below,
we outline each step separately.

3.1 Mesh conformity

As noted in Section 2, vertices on ∂O have to be inserted in order for the mesh
boundary (i.e., triangles incident to 2 or more tetrahedra of different labels) to
be a good approximation of ∂O. For this reason, we keep track of the tetrahedra
whose circumball B intersects the surface ∂O. We call such elements intersecting
tetrahedra.

Suppose that an intersecting tetrahedron t is found. We compute the clos-
est surface point —say p —to the center c of t’s circumball B. To facilitate the
computation of such a point, we make use of an image euclidean distance trans-
formation [18]. If p is not closer than δ to any other surface vertex (already
inserted in the mesh), then p is inserted (see Figure 2(a)). Otherwise, and if the
radius of B is larger than 2δ, c is inserted instead (see Figure 2(b)). In this way,
we can show that this step does not cause the insertion of infinite number of
vertices and therefore, termination is not compromised.

For the same reason, we also require that no vertex is ever inserted outside
the box. When the circumcenter c of an intersecting tetrahedron is chosen for
insertion, however, cmight lie outside the box. To prevent such cases, c is rejected
and its projection on the box is inserted instead. See Figure 2(c) and Figure 2(d)
for a couple of examples.

At the end of this step, all the vertices that do not lie on ∂O are deleted
from the triangulation. At this moment, the restricted facets of the mesh are a
good approximation of ∂O, because the vertices remained in the triangulation
form a dense sample of ∂O (see Section 2). Also, we can show that no 2 vertices
are closer than δ and this is why δ controls the size of the mesh.

3.2 Point rejection quality improvement

Our algorithm keeps track of poor tetrahedra, i.e., tetrahedra with small or large
dihedral angles. Poor tetrahedra are eliminated by inserting their circumcenter.
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Priority is given to the tetrahedra with higher radius-edge ratio as in [16]. The
radius-edge ratio of a tetrahedron t is defined as the length of t’s circumball
radius divided by the length of t’s shortest edge.

Problems arise, however, when the circumcenter of a poor tetrahedron (about
to be eliminated) lies close to the surface. If this is the case, the restricted facets in
the triangulation are not any more a good approximation of ∂O. See Figure 3(a)
for an example: the boundary facets have vertices that do not lie precisely on
the surface.

(a) (b) (c)

Fig. 3. Meshes for a kidney. All dihedral angles are between 19◦ and 150◦. (a) No
extra care has been taken to preserve fidelity and holes appear. (b) The point rejection
strategies prevented the creation of holes. (c) A cross section of the mesh in (b).

To overcome this issue, we propose special point rejection strategies. Their
goal is to make sure that all poor tetrahedra are eliminated without inserting
points close to the surface.

Our algorithm first tries to convert illegal facets to legal ones. We define
legal facets to be those restricted facets whose thee vertices lie precisely on ∂O.
Conversely, a restricted facet with at least one vertex not lying on ∂O is called
an illegal facet.

Let t be an illegal facet and e its voronoi edge (see Figure 4(a) for an illustra-
tion). Recall that e has to intersect ∂O (see Section 2) at a point p. Any vertex
v of t which does not lie precisely on ∂O is deleted from the triangulation, while
point p is inserted. Note that since only non-surface vertices are deleted from
the triangulation and since p is inserted on ∂O, this step does not introduce an
infinite loop: points that are inserted are never deleted.

In addition, the algorithm tries to keep in the Delaunay triangulation as
many legal facets as possible. Let c be the circumcenter of a poor tetrahedron
considered for insertion. If the insertion of c eliminates a legal facet t (see Fig-
ure 4(b)), then c is not inserted. Instead, a point p on the intersection of ∂O and
t’s voronoi edge e is inserted.

Figure 3(b) and Figure 3(c) show how our algorithmmeshed a kidney; observe
that now the boundary facets have vertices lying precisely on ∂O. In the next
section, we will demonstrate that our point rejection strategies work also very
well on multi-material domains.
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Fig. 4. The point rejection strategies. (a) t is an illegal facet. (b) t is a legal facet.

4 Results

We ran our experiments on a 64 bit machine equipped with a 2.80GHz quad-core
Intel i7 processor and 8GB of memory. Our algorithm was built on top of the
Computational Geometry Algorithms Library (CGAL, http://www.cgal.org).We
used the Insight Toolkit (ITK, http://www.itk.org) for image processing. Lastly,
the Visualization Toolkit (VTK, http://www.vtk.org) rendered the meshes.

Figure 5(a) illustrates the output mesh obtained for a segmented CT image
taken from IRCAD (http://www.ircad.fr). Similarly, Figure 5(b) depicts the out-
put mesh obtained for the MR brodmann atlas (http://www.sph.sc.edu/comd/
rorden/mricro.html). Observe that the mesh elements are of excellent quality.
Although we do not give guarantees on the minimum and maximum angles
achieved by our method, we observed that the point rejection strategies are able
to remove elements with angles less than 19◦ and more than 150◦ (in any image
input we tried) without creating an edge smaller than δ

10 . It would be interesting
to theoretically investigate why elements of worse quality are eliminated so eas-
ily without introducing very small edges. We leave that exploration as a future
work. See the columns “ircad” and “brodmann” of Table 1 for some statistical
results.

The last row of Table 1 shows the largest tetrahedron aspect ratio. Aspect
ratio is defined as the ratio of a tetrahedron’s circumradius to its inradius. The
reported aspect ratio is normalized such that the best aspect ratio equals 1.
Therefore, the aspect ratio ranges from 1 to +∞. A high aspect ratio is an
indication of bad quality.

Lastly, we show that the size of the mesh can be controlled directly by pa-
rameter δ. For this reason, we ran our mesher on the same CT image (obtained
by IRCAD), but this time we set the value of δ at 8. That is, we double the value
of δ used to obtain the mesh of Figure 5(a). See Figure 5(c) for an illustration
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Fig. 5. Whole meshes, zoomed views, cross sections, and distributions of the dihedral
angles for (a) the CT multi-label image and (b) the MR brain atlas. In (c), we show a
coarser mesh on the same input image that was used in (a).
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Table 1. Information about the images used for the evaluation, the chosen value
for parameter δ, and some quantitative results of the final meshes produced by our
algorithm.

Experiment ircad brodmann ircad(coarse)

Image size 512 × 512 × 219 181 × 217 × 181 512 × 512 × 219
Image resolution (mm) 0.961 × 0.961 × 2.4 1 × 1 × 1 0.961 × 0.961 × 2.4

#Labels 20 41 20
δ (mm) 4 2 8

Time (sec) 421 1, 066 96
#Vertices 139, 740 473, 994 41, 097

#Tetrahedra 783, 445 2, 575, 220 173, 575
Dihedral angles (degrees) 19 − 150 19 − 150 19 − 150

Max. aspect ratio (normalized) 4.67 6.22 4.55

and the last column of Table 1 for some statistical results. Observe that the
number of elements, the number of vertices, and the execution time are greatly
reduced, in the expense of worse fidelity. This is an expected trade-off: the fewer
elements a mesh has, the less likely it is to represent complex surface creases
accurately.

To evaluate our method, we compare it with CGAL (http://www.cgal.org). A
comparison with other popular meshing techniques like Tetgen (http://tetgen.
berlios.de/) or Netgen (http://www.hpfem.jku.at/netgen/) is omitted in this
paper, because they do not operate directly on images. Rather, they require
that the surface is already meshed as a piecewise linear complex. In contrast,
both our algorithm and CGAL mesh the surface and the volume at the same
time.

We run CGAL on the ircad CT image and report the achieved quality. We set
CGAL’s sizing parameters to values that gave output meshes with size similar
to the size of our mesh depicted in Figure 5(a). Furthermore, we set the quality
parameters to their best theoretical values as described in [11]. Quantitative
results for CGAL’s output mesh are shown in Table 2. Compare it with the first
column of Table 1. Observe that the quality of the CGAL mesh is lower than ours
in terms of dihedral angles and aspect ratios. Another popular quality metric
is the minimum scaled Jacobian value [19, 20]. It ranges from −1 to 1 with 1
being the best value. A negative value means that some elements are inverted.
Both our algorithm and CGAL report positive scaled Jacobian values. In fact,
the minimum Jacobian value achieved by our algorithm is 30 times larger than
that achieved by CGAL. In terms of absolute numbers, we feel that the Jacobian
values of our method is low, an issue we are looking into as future work.

5 Conclusions and future work

In conclusion, we have shown that Delaunay refinement techniques are able to
mesh multi-material domains with tetrahedra of very good angles, which makes
our method suitable for subsequent finite element analysis. The point rejection
strategies proposed in this work maintain mesh conformity and high quality
offering, at the same time, control over the mesh size.
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Table 2. Quantitative results of the final mesh produced by CGAL.

Experiment ircad

#Vertices 156, 902

#Tetrahedra 756, 462

Dihedral angles (degrees) 3− 174

Max. aspect ratio (normalized) 16, 823

Note that surface patches of high curvature need to be meshed with more
elements than patches that are not sharp. In its current state, our method meshes
the surfaces uniformly. In the future, we plan to extend our method to produce
graded triangular surfaces and, therefore, smaller meshes.
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