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ABSTRACT
The modeling of physical processes in biomedical image anal-
ysis requires a discretization of the image space into sim-
ple shapes like triangles in two dimensions and tetrahedra
in three dimensions. These discretizations are known as
meshes, and the construction of the meshes as image-to-
mesh conversion. There are a number of requirements on
image-to-mesh conversion, the most critical of them being
the shape of mesh elements in terms of the absence of small
angles, the faithful geometrical representation of the tissues
by the mesh elements, small number of elements for real-
time Finite Element and Finite Volume analysis, and rapid
execution times. We present a novel algorithm for triangular
and tetrahedral image-to-mesh conversion which allows for
guaranteed bounds on the smallest dihedral angle and on the
distance between the boundaries of the mesh and the bound-
aries of the tissues. The algorithm produces a small number
of mesh elements that comply with these bounds. We also
describe and evaluate our implementation of the proposed
algorithm on two publicly available three-dimensional medi-
cal atlases. The implementation is faster than a state-of-the
art Delaunay code, and in addition solves the small dihedral
angle problem.
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1. INTRODUCTION
The ability to tessellate a medical image of a tissue into

tetrahedra will enable quantitative analysis on patient-specific
images using Finite Element (FE) and Finite Volume (FV)
methods. This has significant implications in a vast range
of areas, such as imaged-guided therapy, development of ad-
vanced patient-specific blood flow mathematical models for
the prevention and treatment of stroke, patient-specific in-
teractive surgery simulation for training young clinicians,
and study of biomechanical properties of collagen nano-straws
of patients with chest wall deformities, to name just a few.
Below we briefly describe the above mentioned applications
which are the most familiar to us due to the ongoing collab-
orative research efforts.

Non-Rigid Registration for Image Guided Neuro-
surgery. The Brain Tumor Society estimates that each year
more than 200,000 people in the USA are diagnosed with a
primary or metastatic brain tumor. A greater percentage
of resection and a smaller volume of postoperative resid-
ual tumor are associated with an improved prognosis for
the patient [7, 16]. The majority of malignant gliomas recur
within 2 cm of the enhancing edge of the original tumor,
providing impetus for improved surgical resection. Precise
delineation of resection margins is very difficult because tu-
mors can closely resemble brain. Maximal resection is also
complicated because tumors infiltrate and can be immedi-
ately adjacent to critical functioning brain tissue. Moreover,
deformation of brain structures occurring intra-operatively
renders pre-operative images inaccurate. Non-rigid regis-
tration techniques are capable of utilizing transformations
that model local deformations. The registration problem is
formulated as an iterative estimation of the deformation us-
ing an approximation method. A tetrahedral finite element
mesh has a dual role in the formulation. First, it is used to
find the mechanical energy of the system and model defor-
mation of the brain as a physical body based on FEM. In
addition, the mesh is also used to regularize, or smooth, the
displacements estimated with block matching [6, 11].

Blood Flow Simulation. Cerebrovascular disease (CVD),
or stroke, is one of the leading natural causes of death in the
US, accounting for 1 in 17 deaths in 2005, and associated
with debilitating morbidity among survivors. Interactions
of blood flow in the human brain occur between different
scales, determined by flow features in the large arteries, the
smaller arteries and arterioles, and the capillaries all be-
ing coupled to cellular and sub-cellular biological processes.
While many biological aspects have been studied systemat-
ically, surprisingly little effort has been put into studying



Figure 1: Left: MRA, courtesy of Dr. Wu of Neu-
rosurgical Department of Huashan Hospital Shang-
hai Medical College, Fudan University, Shanghai,
China. Right: Image Analysis of Patient Cartilage,
courtesy of Dr. Stacey of Old Dominion University.

blood flow patterns within the brain and no studies exist
that couple brain-shift and multi-scale blood flow in the con-
text of neurosurgery or simulators for training young neu-
rosurgeons. Recent 3D imaging of the human brain pro-
vides statistical information for constructing realistic topo-
logical finite element models on which future brain simu-
lations will be based. Moreover, imaging technology and
real-time image-guided neurosurgery systems in advanced
operating suites can be used for better understanding for
treatment and prevention of CVD. The missing piece is the
capability to perform finite element simulations at a level-of-
detail that can provide insight on the what, why, and how in
addressing stroke-related problems to improve the long-term
prospects of patients for good quality of life while reducing
health care costs. Again, Image-to-Mesh (I2M) conversion
is a critical building block in these simulations.

Medical Simulators. The purpose of interactive surgery
simulation is to train young surgeons in conjunction with a
haptic and visual computer interface, and it has been shown
in some studies to have a measurable impact on surgical skill
and patient outcome. Finite elements are a method for nu-
merically estimating unknown displacements, stresses, forces
and possibly other variables, by expressing an equation for
mechanical equilibrium conditions. This approach requires
that a tissue volume be decomposed into simple geometrical
components such as tetrahedra or hexahedra. In this pa-
per we focus on tetrahedral meshes only. There are ongoing
efforts [25] that focus on hexahedral elements.

Image Analysis Of Patient Cartilage For Predict-
ing Surgical Responses. Collagen fibers (nano-straws)
are responsible for tensile strength of cartilage, see Figure 1.
The cartilage of patients with chest wall deformities has been
described as weak; therefore, abnormalities of collagen fibers
observed in the cartilage of these patients may underlie these
disorders. Until recently, it has not been possible to accu-
rately and reproducibly measure biomechanical properties
of collagen fibers. A state-of-the-art instrument, four-probe
MultiView4000TM AFM (Atomic Force Microscopy), and
physics-based nonrigid registration and I2M technologies for
2D and 3D images from our group have made such an un-
dertaking possible.

1.1 Requirements on Image-To-Mesh Conver-
sion

The problem of unstructured I2M conversion is the fol-

lowing. Given an image as a collection of voxels, such that
each voxel is assigned a label of a single tissue or of the
background, construct a tetrahedral mesh that overlays the
tissues and conforms to their boundaries. In this paper we
present an algorithm for constructing meshes that are suit-
able for real-time finite element analysis, i.e., they satisfy
the following requirements:

1. Elements do not have arbitrarily small angles which
lead to poor conditioning of the stiffness matrix in FE and
FV Analysis for biomechanics applications. In particular, we
guarantee that all dihedral angles are above a user-specified
lower bound which can be set to any value up to 35.26◦. In
contrast, guaranteed quality Delaunay methods only satisfy
a bound on circumradius-to-shortest edge ratio which in 3D
does not imply a bound on dihedral angles.

2. The mesh offers a reasonably close representation (fi-
delity) of the underlying tissues. Since the image is already
an approximation (up to a pixel granularity) of a continu-
ous physical object, even a strict matching of the mesh to
individual pixel’s boundaries will not lead to a mesh which
is completely faithful to the boundaries of the object. More-
over, this approach will produce a large number of elements
that will slow down the solver. Instead, our solution is to
expose parameters that allow for a trade-off between the
fidelity and the final number of elements with the goal of
improving the end-to-end execution time of the FE analysis
codes.

3. The number of tetrahedra in the mesh is as small as
possible provided the two requirements above are satisfied.
We achieve this goal by developing a specialized mesh deci-
mation procedure.

4. The mesh can be constructed in a reasonably short
period of time, typically within a few minutes.

Below we describe our efficient implementation that meets
all of these requirements. Our proposed method is designed
to be suitable for parallelization which will further improve
its execution time and allow for greater problem sizes.

1.2 Approach and Related Work
There is a large body of work on constructing guaranteed

quality meshes for Computer Aided Design (CAD) mod-
els. The specificity of CAD-oriented approaches is that the
meshes have to match exactly to the boundaries of the mod-
els. The most widely used guaranteed-quality CAD-oriented
approach is based on Delaunay refinement [13]. However,
the problem with Delaunay refinement in 3D is that it al-
lows only for a bound on circumradius-to-shortest edge ratio
of tetrahedra, which does not help to improve the dihedral
angles. As a result, almost flat tetrahedra called slivers can
survive. There are a number of post-processing techniques
to eliminate slivers [1–3, 19, 23, 32]. While some of them have
been shown to produce very good dihedral angles in practice,
we are not aware of an implementation that can guarantee
significant (1◦ and above) dihedral angle bounds.

Labelle and Shewchuk [18] described an Isosurface Stuffing
method for guaranteed quality tetrahedral meshing for do-
mains defined by general surfaces. They offer a one-sided fi-
delity guarantee (from the mesh to the model) in terms of the
Hausdorff distance, and, provided the surface is sufficiently
smooth, also the guarantee in the other direction (from the
model to the mesh). Their algorithm first constructs an oc-
tree that covers the model, then fills the octree leaves with
high quality template elements, and finally warps the mesh



vertices onto the model surface, or inserts vertices on the
surface, and locally modifies the mesh. Using interval arith-
metic, they prove that new elements have dihedral angles
above a certain threshold. However, images are not smooth
surfaces, and to the best of our knowledge, this technique
has not been extended to mesh images. One approach could
be to interpolate or approximate the boundary pixels by a
smooth surface, but it would be complicated by the need to
control the maximum approximation (interpolation) error.
On the other hand, an I2M solution can benefit from the
fact that images provide more information on their struc-
ture than general surfaces. For example, in our proposed
I2M algorithm we do not have to struggle with the problem
of quadruple-zero tetrahedra, which complicates the Isosur-
face Stuffing method. Quadruple-zero tetrahedra are those
that have all four vertices on the surface, and it is not clear
if they should be classified as interior or exterior.

There are also heuristic solutions to the I2M problem,
some of them developed in our group [10, 20], that fall into
two categories: (1) first coarsen the boundary of the image,
and then apply CAD-based algorithms to construct the final
mesh, (2) construct the mesh which covers the image, and
then warp some of the mesh vertices onto the image surface.
The first approach tries to address the fidelity and then the
quality requirements, while the second approach does it in
reverse order. Unfortunately, neither of these approaches
can guarantee the quality of elements in terms of dihedral
angles. Both of them face the same underlying difficulty
which consists in separating the steps that attempt to sat-
isfy the quality and the fidelity requirements. As a result,
the output of one step does not produce an optimal input
for the other step. An approach based on filling in brick ele-
ments with quality tetrahedra was developed by Hartmann
and Kruggel [15], however, it keeps an over-refined mesh
near the boundaries. Another method by Dogan et al. [9]
produces a mesh as a by-product of an iterative segmenta-
tion procedure, by an application of a CAD-oriented mesh
generator Triangle [27] to the segmented boundaries.

The solution we propose in this paper is to simultaneously
satisfy the quality and the fidelity requirements. We achieve
this goal by constructing an initial fine mesh with very high
quality and fidelity. The construction of this mesh is fea-
sible due to the specific structure of the input, which is a
collection of cubic blocks corresponding to the voxels of the
image. This initial mesh, however, has a large number of
elements due to the fact that it is a one-fits-all solution with
respect to the angle and fidelity parameters, for a given im-
age, since it satisfies the highest dihedral angle and fidelity
bounds. Therefore, we implement a post-processing decima-
tion step that coarsens the mesh to a much lower number of
elements while at all times maintaining the required fidelity
and quality bounds.

Mesh coarsening using vertex removal operation, which
we use in our algorithm, has been employed previously in
various formulations in a large number of published results
(some of which mentioned below) for a variety of optimiza-
tion problems. However, we are not aware of these or other
publications to propose a mesh simplification algorithm that
simultaneously bounds the quality and the fidelity of the
mesh in the sequence of vertex removal (also known as edge
collapse) operations. For example, Cohen et al. [8] proposed
simplification envelopes for producing hierarchies of level-
of-detail approximations of polygonal models. They guar-

antee a bound on the distance between the object and its
approximation, however do not account for the dihedral an-
gles. Garland and Heckbert [12] presented a surface sim-
plification algorithm which can preserve surface shape and
associated properties like color and texture, but also does
not consider the dihedral angles in the volume. Trotts and
Joy [33] bound the deviation error in the linear spline ap-
proximations of the scalar fields. Cignoni et al. [5] measure
only the distance between the original and the simplified
surfaces. Chopra and Meyer [4] describe a tetrahedral mesh
simplification framework where the error metric uses a nor-
mal stretch ratio which accounts for the length change in the
base normal of an affected tetrahedron. Hoppe et al. [17]
represent a mesh as a system of springs, and accept an edge
collapse only if it reduces the total energy. Yan et al. [34]
prioritize edge collapse operations based on the importance
of the corresponding vertices in the hierarchical structure.
Schroeder et al. [26] use the decimation criterion based on
the distance of the vertex to the average plane in its neigh-
borhood. Pajarola and Rossignac [22] prioritize edges in or-
der of increased surface approximation error for progressive
mesh compression.

Zhang et al. [35] described an algorithm to construct adap-
tive and quality 3D meshes from imaging data. Similar
to our approach, they create an initial octree-based mesh,
and then improve its quality using iterative edge contrac-
tion. Specifically, their approach removes tetrahedra with
the worst ratio of the longest to shortest edge length by con-
tracting their shortest edges; however, when it is detected
that a requested ratio threshold cannot be reached the strat-
egy is reversed to point insertion through longest edge bisec-
tion. The conceptual difference with the algorithm proposed
in this paper is that the approach by Zhang et al. uses mesh
decimation to improve both element shape and mesh size
simultaneously which is not always guaranteed to reach a
desired threshold, while we trade element shape for mesh
size and thus can stop shape deterioration at any bound be-
low the high starting value. Another approach proposed by
Reid et al. [24] and Goksel et al. [14] is to iteratively deform
an initial mesh by vertex movement and other operations to
conform to the boundaries in the image.

Our proposed approach may appear to require excessive
amounts of computational time and storage. However, we
demonstrate that with a carefully optimized implementation
it can be used to mesh three-dimensional images of practi-
cally significant sizes even on a regular desktop workstation.
Furthermore, our time measurements show that for two com-
plex medical atlas images (brain and abdominal) it is 28%
to 42% faster than a state-of-the art Delaunay software.

The rest of the paper is organized as follows. In Section 2
we describe the proposed algorithm in detail. In Section 3
we present the implementation details along with the exper-
imental evaluation. Section 4 concludes the paper.

2. ALGORITHM
The proposed Lattice Decimation (LD) algorithm works

both for 2D and for 3D images. For explanation purposes,
in Figure 2 we show a simple 2D example of an image being
converted into a triangular mesh. The size of this image is
50 × 50 voxels. It defines two circular objects, which could
represent tissues or materials, one within another, shown
with different colors (cyan and magenta) against white back-
ground.



Figure 2: An illustration of the main steps per-
formed by our LD I2M algorithm. The angle bound
is set to 20◦, and the fidelity bounds are both set to
two voxels. Left: The initial fine mesh which fills in
the quadtree, 2076 triangles inside the circles, 3534
triangles total. Right: The final decimated mesh,
263 triangles inside the circles, the outside trian-
gles are removed. The inter-tissue boundaries are
within the marked leaves, and therefore within the
requested fidelity tolerance.

The mesh has to provide a faithful representation of the
underlying tissues, i.e., each element needs to be marked
with the physical properties of a unique type of tissue. To
measure the distance between the boundaries of the two
regions (the image of a tissue and the corresponding sub-
mesh), we use the Hausdorff distance. It can be specified
as either a two-sided distance, or a one-sided distance. For
tissue boundary I and mesh boundary M , the one-sided dis-
tance from I to M is given by

H(I →M) = max
i∈I

min
m∈M

d(i,m),

where d(·, ·) is the regular Euclidean distance. The one-sided
distance from M to I is given similarly by

H(M → I) = max
m∈M

min
i∈I

d(m, i).

Note that H(I → M) is generally not equal to H(M → I).
The two-sided distance is symmetric:

H(I ↔M) = max{H(I →M), H(M → I)}.

2.1 Input
The input to our algorithm is a 2D or a 3D bitmap. Each

voxel of the bitmap corresponds to a separate material or
tissue, as indicated by a single label (color) assigned to this
voxel. The user also supplies the desired angle lower bound
and fidelity bounds. We will use starred letters θ∗ and H∗ to
denote the bounds on the angle and the Hausdorff distance,
respectively.

2.2 Construction of the Octree
We construct an octree (in 3D) or a quadtree (in 2D) that

satisfies the following properties (see Figure 2):
1. The octree (equivalently, its root node) completely en-

closes all the tissues from the image, except possibly for the
background voxels that can be ignored.

2. There is extra space, equal to or greater than the maxi-
mum of the fidelity parameters, between the tissues and the
exterior boundaries of the octree.

3. The boundaries between the leaves correspond exactly
to the boundaries between the voxels. This is possible by
using integer coordinates corresponding to voxel indices.

4. No leaf contains voxels from multiple tissues. The
nodes of the tree are split recursively until all of the leaves
satisfy this condition.

5. The sizes of the octree leaves respect the 2-to-1 rule,
i.e., two adjacent leaves must differ in depth by no more
than one level.

2.3 Computation of the Distance Transform
A distance transform of an image is an assignment to every

voxel of a distance to the nearest feature of the image. In
our case, the features are the boundaries between the tissues,
and the distance is measured in the usual Euclidean metric.
We implemented the Euclidean Distance Transform (EDT)
algorithm described by Maurer [21]. We chose this algorithm
for two reasons: (1) its linear time complexity with respect
to the number of voxels, and (2) it is formulated to work in
an arbitrary dimension. We run the EDT computation on
the extended image, i.e., the image is padded with imaginary
background voxels (or truncated of the extra background
voxels) to the size of the octree root node.

2.4 Labeling of Octree Leaves
For each leaf of the octree, we find the maximum distance

to the inter-tissue boundaries, using the EDT values of the
voxels enclosed by this leaf. In Figure 2 we marked the leaves
that are within the tolerance (2 voxels in this example) with
transparent gray filling.

2.5 Filling in the Octree
We process the leaves in the order of their size, starting

with the smallest, in order to ensure the conformity of the
mesh along the boundaries, see Figure 2 for a 2D exam-
ple. The procedure is recursive on dimension: to triangulate
an n-dimensional face of the leaf, first triangulate all of its
(n− 1)-dimensional sub-faces. If at least one of the (n− 1)-
dimensional sub-faces is split by a mid-point, introduce the
mid-point of the n-dimensional face and connect to the ele-
ments of the (n−1)-dimensional triangulation of the sub-face
to construct the n-dimensional triangulation of the face. If
none of the sub-faces was split, use the diagonals of the face.

This procedure is equivalent to using a finite number of
predefined canonic leaf triangulations, with the extra bene-
fits of reducing manual programming labor and being appli-
cable in an arbitrary dimension. For all possible resulting
leaf triangulations we obtain a minimum dihedral angle of
35.26◦ in 3D or a minimum planar angle of 45◦ in 2D. Hence,
these are the bounds that the algorithm can guarantee.

Once all octree leaves are filled with tetrahedra, we finish
the construction of the mesh data structure by identifying
face-adjacent tetrahedra, in order to facilitate the decima-
tion procedure.

2.6 Mesh Decimation
We say vertex u is merged to vertex v if vertex u and

edge uv are removed from the mesh, such that all tetra-
hedra (triangles) incident upon edge uv are also removed
from the mesh and the remaining edges that were incident
upon u now become incident upon v. See Figure 3 for an
illustration.

Our decimation algorithm is shown in Figure 4. We main-
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Figure 3: An illustration of the vertex merge operation. Left: Vertex u is evaluated for merging to vertex v.
The shaded triangles need to be checked for the effect of changing their shape. Center: Vertex u is merged
to vertex v. The list of vertices in brackets shows merge history. Vertex v is evaluated for merging to vertex
w. Right: Vertex v is merged to vertex w.

tain a queue Q of mesh vertices that are candidates for merg-
ing. The algorithm removes from and adds vertices to Q
until Q becomes empty. Note that after the initialization a
vertex can be added on the queue only as a result of a merge
of an adjacent vertex. Therefore, when none of the vertices
in Q passes the check for a merge, Q will become empty and
the decimation procedure will terminate. Suppose n is the
total number of vertices in the original mesh. Every vertex
is added to Q once in the beginning. Afterwards, a vertex is
added to Q only if one of its vertex neighbors was merged.
If m is the total number of merges performed (obviously
m < n), then the total number of evaluations is bounded
from above by n+ cm, where c is the maximum number of
vertex neighbors for each vertex. Assuming c is constant,
the feasibility of performing a vertex merge is evaluated a
linear number of times with respect to the original number
of vertices in the mesh.

2.6.1 Maintaining Element Quality
The function Check4Quality(T , θ∗) returns true if and

only if all elements on the list T are not inverted and have all
angles (planar in 2D or dihedral in 3D) above the bound θ∗.
Therefore, the merge is not accepted if at least one newly
created angle is smaller than θ∗.

2.6.2 Maintaining Fidelity to Boundaries
This check, represented by the function Check4Fidelity(T ,
O, H∗(I →M), H∗(M → I)) consists of two parts, for each
of the one-sided Hausdorff distances. To evaluate the dis-
tance from the boundary of the sub-mesh to the boundary
of the corresponding tissue, for each of the boundary faces
(edges in 2D or triangles in 3D) of elements in T , we recur-
sively check for the intersection with the octree nodes. If
at least one of the faces intersects at least one of the nodes
marked as outside the fidelity tolerance, the merge is dis-
carded. To evaluate the distance from the boundary of each
tissue to the boundary of the corresponding sub-mesh, for
each vertex we maintain a cumulative list of the boundary
vertices that were merged to it. If at least one of the bound-
ary vertices, as a result of a sequence of merges, is further
away from its original location than the corresponding fi-
delity tolerance, the merge is discarded.

2.6.3 Maintaining Tissue Connectivity
The geometric constructions used in our algorithm are

assigned colors based on their location with respect to the

tissues on the bitmap:
1. Each leaf of the octree (quadtree) derives the color

from the block of voxels that it encloses; remember that
the nodes are split recursively until they enclose voxels of a
single color, in the limit case a leaf encloses a single voxel.

2. Each tetrahedron in 3D (or triangle in 2D) derives its
color from the octree (quadtree) leaf that it is used to tetra-
hedralize; it keeps the original color even after it changes
shape due to vertex merge. As a result, all tetrahedra (tri-
angles) are always correctly classified with respect to the un-
derlying tissues, including the quadruple-zero (triple-zero)
ones.

3. Each mesh vertex derives its color from the block of
incident voxels (eight in 3D or four in 2D); if the block of
voxels has multiple colors, the vertex is considered boundary.

The following rules help us maintain the original struc-
ture of the inter-tissue boundaries: (1) boundary vertices
cannot merge to non-boundary vertices, (2) a vertex cannot
merge to a non-boundary vertex of a different color, and
(3) a boundary vertex can merge to another boundary ver-
tex only along a boundary edge—this helps to prevent the
case when a vertex from one boundary merges to another
boundary along a non-boundary edge, and thus the merge
connects the parts of the boundaries that were not originally
connected.

3. IMPLEMENTATION AND EVALUATION
We implemented the proposed Lattice Decimation (LD)

algorithm in C++, in both two and three dimensions. The
following implementation decisions have significantly improved
the performance:

1. Most of the computation is performed in integer arith-
metic. This is possible due to the fact that vertex coor-
dinates are integers; they are indices with respect to the
matrix of voxels. The only floating point computation is
involved in the comparison of cosines of angles since long
integer arithmetic could overflow. In addition, the lengths
of the integer variables correspond to the range of values of
each specific arithmetic operation, such that very long in-
tegers are used only when necessary to avoid overflow. For
example, if variable x is represented with b bits, then x2 re-
quires 2b bits, while x4 requires 4b bits; using 4b bits for x2

would be excessive.
2. All expensive mathematical functions, such as trigono-

metric, square root, etc., including floating point division,
are avoided in the computationally critical parts. Instead,



Decimation(M, O, θ∗, H∗(I →M), H∗(M → I))
Input:M is the initial mesh

O is the octree
θ∗ is the lower bound on the minimum angle bound
H∗(I →M) and H∗(M → I) are the upper bounds
on one-sided Hausdorff distances

Output: Decimated mesh M that
respects angle and fidelity bounds

1: Initialize Q to the set of all vertices in M
2: while Q 6= ∅
3: Pick vi ∈ Q
4: Q←− Q \ {vi}
5: Find A = {vj} the set of vertices adjacent to vi

6: for each vj ∈ A
7: Find T = {tk} the set of tetrahedra incident

upon vi and not incident upon vj

8: for each tk ∈ T
9: Replace vi with vj in tk

10: endfor
11: if (Check4Quality(T , θ∗) ∧

Check4Fidelity(T , O, H∗(I →M), H∗(M → I)) ∧
Check4Connectivity(T , M))

12: Merge vi to vj , update M
13: Q←− Q ∪A
14: break
15: endif
16: for each tk ∈ T
17: Replace vj with vi in tk
18: endfor
19: endfor
20: endwhile
21: returnM

Figure 4: A high level description of the decimation
algorithm. The actual implementation is slightly dif-
ferent and more elaborate to support efficient data
structures and to minimize computation, for more
details see Section 3.

computation is performed on squares, cosines, and other
functions of the original values.

3. We wrote customized memory allocation functions,
such that objects that are created in large numbers but oc-
cupy little memory each (vertices, tetrahedra, nodes of the
tree) are allocated in contiguous memory buffers. This im-
provement decreases memory fragmentation and allocation
overheads.

4. We arranged the sequences of complex pass-fail condi-
tion evaluations such that the least expensive and the most
likely to fail conditions are evaluated first, while the most
expensive ones are evaluated last.

We evaluated the proposed algorithm using two publicly
available complex real-world medical images: an abdominal
atlas [30], and a brain atlas [31]. The atlases come with a
segmentation, such that each voxel is assigned a label which
corresponds to one of 75 abdominal and 149 brain tissues.
All tests were performed on a desktop with an Intel Core i7
CPU @ 2.80 GHz and 8 GB of main memory. Machines with
similar configurations are relatively inexpensive nowadays
and can be obtained by virtually any practitioner.

The size of the abdominal atlas is 256× 256× 113 voxels
and the size of the brain atlas is 256× 256× 159 voxels. In
both cases each voxel has side lengths of 0.9375, 0.9375, and
1.5000 units in x, y, and z directions respectively. Before
meshing the atlases, we resampled them with voxels of equal
side length corresponding to the original 0.9375 units. As a
result, in both cases we obtained equally spaced images that

Figure 5: A slice through the LD mesh of the ab-
dominal atlas for θ∗ = 15◦. Top: H∗(I ↔ M) = 0,
bottom: H∗(I ↔M) = 2.

were used for meshing. Figures 5 and 7 show some resulting
meshes for the atlases for various fidelity bounds.

In Table 1 we list the final number of tetrahedra, the
smallest dihedral angle, and the total running time for both
images, as we vary the H∗ and θ∗ parameters. To obtain a
point of reference for these numbers, we conducted a sepa-
rate experiment using a state-of-the art open source tetrahe-
dral mesh generator Tetgen [28]. Tetgen is designed to work
with Piecewise Linear Complexes (PLCs), and not images.
Therefore, to make it process the same tissue geometries,
we extracted the voxel faces corresponding to the bound-
aries between different tissues and between the tissues and
the surrounding space, and saved them in the PLC format
files that we passed to Tetgen. The main difference between
the two methods is that Tetgen does not provide any guar-
antees on the dihedral angle (since it is designed to improve
only circumradius-to-shortest edge ratio of tetrahedra for
general PLCs), and its empirical smallest dihedral angle will
generally be different for other input geometries. As can be
expected, the meshes produced by Tetgen had low smallest
dihedral angles, around 5◦. At the same time, our LD al-
gorithm can provide guaranteed smallest dihedral angles up
to 35.26◦ for all input images.

For all of our time measurements we excluded all data
preprocessing, such as image resampling, surface extraction,
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Figure 6: Final number of tetrahedra using LD, for varied θ∗ and H∗(I ↔M).

and input/output. We see that our LD implementation is
faster than Tetgen by a significant margin for both atlas im-
ages. Figures 8 and 9 show breakdowns of the total LD time
into the main computational components as the symmetric
Hausdorff distance bound changes from 0 to 2 voxels. We see
little change both in the running time and in its distribution
with the variation of H∗ and θ∗ parameters.

As far as the number of tetrahedra, the difference between
Tetgen and LD is insignificant, although in both cases in fa-
vor of LD, for the bound of H∗(I ↔M) = 0 which allows for
a comparison with respect to the same fidelity, and θ∗ = 5◦

which is close to the empirical Tetgen angles. In Figure 6
we show the final number of tetrahedra for both atlases pro-
duced with the LD implementation, as we vary H∗(I ↔M)
and θ∗.

4. SUMMARY
We presented a novel guaranteed quality and fidelity image-

to-mesh conversion algorithm and its efficient sequential im-
plementation. The algorithm preserves not only external
boundaries, but also the boundaries between multiple tissues
which makes the resulting meshes suitable for finite element
simulations of multi-tissue regions with different physical tis-
sue properties.

Our experimental evaluation shows that the decimation
procedure produces meshes with fewer tetrahedra for weaker
fidelity and dihedral angle bounds. This follows from the
fact that weaker constraints allow for more opportunities for
vertex removal. We expect that the decimation procedure
can be further improved by adding extra degrees of flexibility
from vertex movement and edge swapping operations. We
are currently working on the development of this extended
algorithm.

The algorithm and the implementation we presented are
sequential. Our future work includes the development of the
corresponding parallel algorithm and the code to increase
the processing speed and the size of the images that can
be handled. One stage of the algorithm, the distance trans-
form, has already been parallelized [29]. However, according
to the Amdahl’s law, to achieve good speedup, we need to
parallelize the other stages as well. We also plan to address
the smoothness of mesh boundaries in order to improve the
accuracy of such simulations as the blood flow.
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