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Abstract—We present an out-of-core run-time system that Our solution is to use computational resources effectively

suppqrts effective p_arallel_ computation of large irregula a}nd by emp|oying less Computing power (i_e_, fewer nodes) and
adaptive problems, in particular unstructured mesh generaion using out-of-core approach for augmenting the memory with

(PUMG). PUMG is a highly challenging application due to . L2
intensive memory accesses, unpredictable communicatiorap disk storage. We developed several out-of-core applicatio

terns, and variable and irregular data dependencies refleaig ~ and demonstrated in [1], [2] the effectiveness of this ap-
the unstructured spatial connectivity of mesh elements. proach. Unfortunately, a task to adapt an existing parallel

Our runtime system allows to transform the footprint of  scientific code or develop an out-of-core code from scratch
parallel applications from wide and shallow into narrow and is both challenging and time consuming.

deep by extending the memory utilization to the out-of- . . . . .
core level. It simplifies and streamlines the development of To simplify and streamline this process we designed and

otherwise highly time consuming out-of-core applicationsas ~ Implemented a practical out-of-core runtime system that
well as the converting of existing applications. It utilizes disk,  supports the execution of large scale parallel application
network and memory hierarchy to achieve high utilization  on a fraction of the nodes that otherwise would be normally
of computing resources without sacrificing performance wih required. As such the parallel codes can utilize computing

PUMG. The runtime system combines different programming . . -
paradigms: multi-threading within the nodes using industrial resources effectively and provide end users with added

strength software framework, one-sided active messages amy be_nefits such as abilities to: (1) increase the problem size
the nodes, and an out-of-core subsystem for managing large using the same hardware setup or (2) keep the same problem
datasets. size but use less of hardware resources (e.g., use fewer

We performed an evaluation on traditional parallel plat-  cores/nodes in a cluster). Our contribution is an efficient
Lqrms o stress test all layers of the run-time system usingwee .\, i ¢ Jibrary that features an easy-to-use API for
ifferent PUMG methods with significantly varying communi- . . . . .
cation and synchronization patterns. We demonstrated high Overlapping I/O and communication with computation, in
overlap in computation, communication, and disk 1/O which ~ addition to communication and load balancing functiogalit
results in good performance when computing large out-of-o@ supported by its predecessor [3].
problems. The runtime system adds very small overhead (Up e evaluated the runtime system using parallel unstruc-
to 18% on most configurations) when computing in-core which 4,04 mesh generation, a challenging adaptive and irregula
means performance IS not compromlsed. . . . . . .
application. Mesh generation is memory-intensive, as op-
posed to computation-intensive, and therefore all datestra
|. INTRODUCTION mission latencies, such as RAM, disc, and network, crigical
influence the overall performance. Moreover, the number of

With the increasing computational demands of scientific | h h h h : f th
applications many existing parallel codes need to be scale@€ments changes (grows) throughout the execution of the

by several orders of magnitude. At the same time manﬁpplicaﬁon, and the structure of the mesh he_avily depends
of those codes are memory bound and do not take fulPn the input geometry, hence memory allocation needs, for

advantage of added computing power. In fact, it is notealCh subproblem, are dlffe_ren_t._ b . ¢
unusual for such applications to require hundreds of nages t t may (;;_eem gcr)]upter mtwgve ut uswg gur OUt'O.'
achieve sufficient aggregate memory and to run only severg0'€ paradigm wit [ewer nodes on a share computing
minutes. Also, not all applications are suited for such high!©>0U"C€ (as in multiple users using a job scheduler) could

degree of parallelism which results in many processors&or lead to a shorter time between a user submitting h'S.JOb
idling most of the time. and getting the results. For example, Parallel Constrained

Delaunay Meshing requires about 64GB of memory to
This work is supported in part by NSF grants CCF-0833081, CSR generate a mesh of 238 million elem_ents_whlch requires
0719929, CCS-0750901 and CCF-0916526. 32 nodes (2GB per node) on our university cluster. The



a

[
1000000 - a80annG e

s,
e goong
100000 + 0000oI BT
4 8
10000 - =2
1000
L}
10 1
=
1+ T T T T T

1-15  16-31  32-47 48-63 64-95 96-127 128+
M max Waverage # of requested processors

o
=
=)

oonoods
pooo oo

=

EEFEEEpoooOiRNS
[5}5]

000CQNDO0D00DE0Sa0
BUO00c0000000000000

Time (sec)
00DD000opE0ongn
BOOOOOOODDOOOO

=
o
o

nood
=7A00

ES00cDoE

EEEEE0000000D
0EDEEEEEE000
0S00n0000
Ni[sla i E(a[a[s[s]
==
238

[

Wwooooo0oo

wad
0g

[/aululunl

0

@@
AREE,
0
[aulujuly]
5000
Vwoma
=

DERNEEEEER000000000000

o

3

o
=
8
s

q
5]
B,
=
80

Figure 2. Decomposition of a 2D slice of a human brain MRI ih@24
Figure 1. Wait-in-queue time statistics for parallel joldlected from the ~ Subdomains mapped onto 8 processors.
last four and a half years from a 300+ processor cluster aCtilege of
William and Mary.

approach [4], [9] indicate that it has high overheads for

efficient parallel execution, while the domain decompositi
execution time is 310 seconds. When ported to our runtimgor the 3D decoupled method is still an open problem [10].
system, the same computation can be done with 16 nodegerefore, we focus on the partially coupled methods. We
or less and it takes 731 seconds (16 nodes). Figure 1 show$ess test the key components of the runtime system (1/O,
an example of how long jobs have to wait before they starispT, and network) using the following three different

executing depending on how many nodes they request. Ofharse grain partially coupled approaches to parallel mesh
this specific small cluster, requests for less than 16 nodegeneration.

are scheduled within a couple of minutes while request for (nitform Parallel Delaunay Refinement (UPDR)The

32 nodes wait on average for half an hour, and requests fQppr method/software presented in [7], [11] is based on
over a hundred nodes take several hours to start. On averagge following key idea: for any two given subdomaifsand
the out-of-core job in our example will finish in about 14 p 2.4 their common buffer zong& betweenA and B the
minutes while the in-core job needs about 35 minutes! | asher would mesh concurrentlyunion Z and B union Z

Our work provides additional options to researchers whoyng then remesh; the process would stop, #&is designed
make use of long running, large scale computing codes. Thg, ot require any further refinement. This approach baknce
obvious benefit is to be able to run much larger problemgyage-offs between the costs of data decomposition and of
than otherwise possible with limited computing resourcescommunication, i.e., it utilizes a simple data decompoiti
For example, using the proposed system one can utilize gethod at the cost of some communication and global
dedicated small workgroup cluster rather than a larger morgynchronization. The communication is structured such tha
powerful but shared supercomputer. Another benefit is th¢jyring each phase of the algorithm all processes know the
ability to use fewer nodes on a shared computing resourcggcipient and/or the sender of the data that they work with.
and get the results faster by shortening the wall-clock time  Non-Uniform Parallel Delaunay Refinement (NUPDR)

Contribution Design, implementation and evaluation of The NUPDR method/software [5] extends the UPDR for
an out-of-core runtime system aimed at large problems anghe case when the application requires that the final mesh
effective utilization of computational resources. Reflely  haye graded (non-uniform) spatial element sizes in differe
simple and streamlined process to transform an in-core apyreas of the domain. This method utilizes a quad-tree data
plication into an out-of-core one. Design and implementati gy cture that distributes the data into blocks corresjmand
of an out-of-core mesh generation application based oe-staty, the leaves of the quad-tree. Due to the variable sizes
of-the-art in-core version. of the leaves the communicating processes also cannot be
known in advance, although there is some regularity in the
communication pattern because of the structured way of

Parallel mesh generation procedures decompose the origenstructing the quad-tree.
inal mesh generation problem into smaller subproblems Parallel Constrained Delaunay Meshing (PCDM)The
that can be solved (meshed) in parallel, see Figure 2?CDM method/software [6] utilizes the domain decompo-
The subproblems can be formulated as either tightly [4]sition, as opposed to the data distribution, approach te par
or partially [5]-[7] coupled or even decoupled [8]. The allelization. l.e., the elements of the resulting meshctyri
coupling of the subproblems (i.e., the degree of dependencyonform to the subdomain boundaries, while with the data
determines the intensity of the communication and of thedistribution approach they only overlap in a more loosely
synchronization between processing elements working odefined way. However, the spatial relationship among the
separate subproblems. Our results with the tightly coupledubdomains looses its regularity, and the communication

A. Mesh Generation Applications



graph becomes completely unstructured. At the same time, geometrically defined area, and most of the computa-
this method sends only asynchronous small messages which  tion is performed on data that does not have outside
can be aggregated to minimize startup overheads, and ex-  dependencies;

hibits low overall communication costs. This makes the 2) although the communication patterns vary among the
software suitable to exploit concurrency at the level of an methods, the common property is that the size of the
SMP node and a cluster of nodes. In addition, the single- data that the PEs need to exchange is relatively small
node performance is comparable to that of the fastest to our ~ compared to the sizes of the subdomains;

knowledge sequential guaranteed quality Delaunay meshing 3) local synchronization — changes in a subdomain

library (Triangle). Our experimental results show very doo usually affect only neighbors of that subdomain, and
(sub-linear) scalability on traditional parallel arcluitigres. global synchronization is not required;

4) irregular access pattern — it is not possible to predict
B. Related Work the exact mesh elements and memory locations that

Distributed shared memory systems such as C Region are accessed;
Library (CRL) [12] provide region-based shared address 5) SPMD data model — single program is used to
space programming model on distributed architectures. CRL ~ Process portions of the dataset in parallel;
hides message passing and instead achieves parallelismB) interoperability — to simplify the porting process we
through accesses to shared regions of virtual memory. In  should not obstruct the MPI or any other form of
[13]' [14] the authors propose to define a common data communication used by the rest of the application (i.e.,
model and data-structure neutral interfaces for mesh gen- FE solver).
eration and adaptive mesh refinement among other services
for scientific applications on future petascale computer ar
chitectures. Zoltan [15] provides graph-based partitigni

algorithms as well as geometric load balancing algorithms. e adopt themobile objectwhich is defined in [3] as
Zoltan requires synchronization during load balancing andy |ocation-independent container implemented by the run-
behaves similarly to other stop-and-repartition libranee  time system to store application data. The decision to define
reviewed [16]. Charm++ [17] is a parallel dialect of C++ mopile objects is left to an application programmer, but it
and an adaptive runtime system which provides load balis recommended to be used for representing larger semi-
ancing, fault tolerance and automatic checkpointing.IRara jsolated fragments of a dataset (e.g., subdomains). A mobil
programming languages (e.g., Chapel [18], Co-array Forppject can be freely moved by the run-time system between
tran [19], X10 [20]) try to improve the programmability of nodes and is globally addressable.

parallel computers by supporting partitioned global agsire 5 messagds an amalgamation of data transfer and a
space and abstractions for various forms of parallelismiemote procedure call [24]. It is one-sided, that means the
None of the above provide explicit support for out-of-Core g ceiving node does not have to post an explicit receive and
computing. In [21] authors proposed to use parallel octreeg; ot interrupted when a message arrives.

?nnedsﬁgzc?lfﬂg'nggu[g;zaigggera;?aﬁzﬁ c?gt?eptta n::j;']\./fo?g; A message handlés a function defined by an application
and uséd it 13‘10: tgrascale finitep element simulationls gTheand registered with a mobile object. A message is deliv-
Adaptive Large-scale Parallel Simulations (ALPS) [22] is ered to a mobile object by invocation of a corresponding

) - i o 1~ message handler on a node where the mobile object is
a library providing dynamic mesh adaptivity and redistri- located. Message handlers, messages and mobile objects
bution. ALPS uses parallel octree-based hexahedral finit ' '

Sllow encapsulation of data represented by mobile objects.
element meshes and dynamic load balancing based on space- P P y )

filling curves. In [23] the authors present a parallel octree A mobile pointeris a global identifier and is used to

based adaptive mesh finite element library for petascaléeference a mobile object. Because a mobile object is not

computing. However, this library targets semi-structure estricted to any specific node a message is addressed to the

hexahedral finite element meshes, while we generate urmObile pointer and the run-time system routes the message

structured (i.e., triangular and tetrahedral) meshes. appropnatgly. Order of messages is preserved only between
two endpoints.

Il. MULTI-LAYERED RUN-TIME SYSTEM In the course of out-of-core computing mobile objects can

be unloaded to and re-loaded from disk. Mobile objects sup-

port serializatiort by implementing serialization interfaces
The three PUMG methods we describe in this paper hav@rovided by the run-time system.

the following common characteristics:

1) SPat'a| Iocallty — each processing element (PE) Work_s 1Serialization is the process of transforming the memoryesgntation
with a subset of mesh elements that cover a certainf an object to a data format suitable for storage or trarsions

B. Background

A. Requirements



# MOBILE OBJECTS % MOBILE POINTERS

C. Programming Model

IN-CORE

The programming model is centered around the mobile APPLIGATION SPACE :‘1“ DISTRIBUTED DIRECTORY
object concept. The run-time system is designed for data I >
centric computation where most of communication happens @\@\\ %?MO:E
between mobile objects rather than between processors. LOGAL DIREGTORY OBUECTS
Parallelism is achieved by executing message handlers si- <
multaneously on multiple nodes and multiple tasks within WORKING POOL /<>
each message handler. The MRTS tries to achieve maximum |
utilization by executing as many tasks as available yet not ®/
oversubscribing the PEs which can lead to unnecessary /f~%<>
context switches and performance degradation.

The usual application for the run-time system has itg omeree”
dataset broken into a collection of mobile objects. We
encourageverdecompositigrthat is the problem is broken

into N subproblems an&/ >> P, whereP is the number of
PEs. It allows greater flexibility for dynamic load balangin
[25] and is even more w_nportant for O_Ut-Of'Core cqmputlng Figure 3. Memory organization and global addressing of tHeTSEl
where the number of objects allowed in memory simultane-

ously is limited by available physical memory.

At the beginning, an application performs initial prepro- D. Organization
cessing (if necessary), creates mobile objects, defined-ser  The run-time system is organized into layers according
ization interfaces, registers message handlers, digtsbihe to the principle of separation of concerns (see Fig. 3).
mobile objects between nodes (optional), initiates thalpar Parallelism is exploited via multi-threading on a node leve
lel phase by posting the initial messages (e.g., main/driveand via message passing between nodes. The memory space
function) and then passes control to the run-time system. available to an application consists of local, disk and remo

The execution progresses by executing messages handlefaémory. Hence, we call our run-time system the Multi-
posting messages and dynamically creating new mobil¢édyered Run-Time System (MRTS). The MRTS is organized
objects. A message is posted to perform an operation ofito the following layers: the storage layer, the out-ofeco
the data of a particular mobile object. Messages can bkyer, the control layer and the computing layer. .
addressed to local (including self), out-of-core and remot The storage layeis used for managing mobile objects
mobile objects. In fact, we strongly recommend to usestored out-of-core. The underlying storage facility isded
messages rather than function calls or other means dfom the application and can utilize regular files, block de-
communication outside of the context of the mobile object Vices and databasesBlocking and non-blocking operations
Otherwise, the application is responsible for load balagci for loading and storing a mobile object are provided. This

and to check and ensure availability of the data it tries tofunctionality is primarily used by the MRTS internally and
access. is not exposed to an application.

A dd d to a local mobile obiect is i . The out-of-core layeis responsible to keep track of mo-
. message addressed 1o a local mobile object 1S nser egile objects and control swapping (i.e., make decision when
into its message queue. If the object is local but out-of-

core the message is queued and the object is scheduled and which objects should be un-/loaded from/to memory.

be loaded i I the obiect | te th _The out-of-core layer also maintains a cache to prefetch
€ loaded in-core. € object 1S remote the MesSSage I, pjq objects depending on swapping scheme and input
routed to the corresponding node and processed there. T

rocessing of a message from a remote node is the same a m application.
" o g ! SThe control layeris responsible for delivering messages
for a local message.

either locally or remotely and controlling migration of

The bulk of parallel computations are performed insideobjects between nodes. Object location is determined by
message handlers. When no message handlers are executifigrying the mobile object distributed directory. Depegdi
and no messages are being delivered the run-time systeon the location of the object the message can be routed to a
detects a termination condition. At this point the controlremote node or queued for local execution. The control layer
is passed back to the application. Usually, at this point
the application performs post-processing (if necessanyl) a 2The evaluation of different storage subsystems is out opesazf this

. Althouah. it is possible to start another phse paper and will t_)e submitted eIseW‘here. O_ut-of-core objamss_tored in

termma_tes- ) gn, - p p a single large file and meta-data is kept in memory at all tifieesall
computing with the run-time system. experiments presented in this paper.

DISK DIRECTORY




decides the order in which message queues of local mobilmg and only returns control when it finishes. Executing
objects are processed. The input from the control layepotentially long running mobile messages can lead to high
influences the swapping decisions of the out-of-core layeroverheads. Therefore, application messages are queuad upo
In addition, the control layer provides memory managemenarrival and executed when appropriate. When a message
primitives to an application [26]. is removed from the queue it is “delivered” by executing

The computing layeis used to provide uniform interface its respective message handler. When the message handler
to various multi-threading technologies employed in theterminates the control layer makes a decision whether to
MRTS. We encourage the use taisks— fragments of code continue to process the message queue of the current object
that can run in parallel and are expected to complete withoubr switch to another object or serve systems aspects like
blocking. Each message handler function viewed as a taskformation dissemination and/or decision making for load
once it is scheduled to be executed and can spawn new taskalancing or swapping. The control layer keeps track of
during the execution. Unlike messages tasks can only acceai messages, including the messages of out-of-core mobile
data of the corresponding mobile object. However, tasks arebjects, and assigns swapping priorities depending on the
lightweight and can be used to exploit fine-grain paraltelis number of messages and the order they were delivered.
without much overhead. The computing layer manages th®epending on the amount of work (i.e., number of messages)
execution of message handlers and tasks, it is responsibie-core the control layer can “advise” the out-of-core laye
for memory allocation, synchronization and load balancingto initiate swapping.
the tasks between PEs (i.e., cores, nodes, racks). Mobile Objects and Threads The mobile object direc-
E . tory that stores mobile pointers is a distributed directory
. Implementation . . . .

) with lazy updates [27], for a mobile object that resides on

Software layers The storage layer implements several 3 remote node its last known location is stored. When a
swapping schemes which are based on popular cache alggessages is sent to that location it is not guaranteed that th
rithms. In addition to the least recently used (LRU) schemejestination mobile object will be there. If not, the message
we implemented the least frequently used (LFU), the mosfs forwarded to the last known location of the object on
recently used (MRU), the most used (MU) and the leastat node. When the message finally arrives to the object’s
used (LU) schemes. While the LRU scheme enjoys highest rent location an update service message is sent back
performance most of the time, for some applications (€.945 all nodes through which the message was routed. We
PCDM) the LFU can be up to 7% faster. experimented with different location management policies

A set of swapping thresholds is used to influence as wellg getermined that lazy updates provides good compromise
as to force swapping in extreme cases. The hard swappingstween accuracy and update overhead [27].
threshold is defined to be a multiple of the size of the largest 11 computing layer provides a lightweight mostly-
mobile object currently stored on disk. The actual value Ccafyrapper interface to multi-threading libraries. We encoer
be_set at the |n!t|aI|zat|on of the MRTS, the de_fau!t is tWO. 5ng support multi-threading within a message handler. Each
This threshold is checked whenever the application wantg,essage handler is a task and can be further broken into
to allocate additional memory. If the amount of memory cpiiq tasks and some of those tasks can be executed in par-
after allocation is less than the threshold unused objectgie| e utilize two different but similar industrial-singth
are forcefu_lly unl_oaded to free memory. The soft SWappingmitj-threading programming technologies (only one can be
threshold is _deflned as a fraction of the total ava'lableactive): (1) Intel Threading Building Blocks (TBB) [28] is
memory and is used to influence caching of the out-of-corg, -4 template library designed to simplify and streamline

mobile objects. When the amount of free memory dropgyarajiel programming for C++ developers. It provides high-
below the soft threshold the storage layer is “advised"@otst | e| abstraction, is based on generic programming and

swapping. The soft threshold can be set at the initialipatio g designed to hide low level details of managing threads
of the ,MRTS’ the default is one half. i and supports nested parallelism; (2) Grand Central Dis-

Additionally, the out-of-core layer provides an APl 10 nach (GCD) [29] is an Apple technology used to optimize
assign swapping priorities to mobile objetmnd directly 55 5jication support for systems with multiple and/or multi
lock/unlock mobile objects. The locking is straightfordiar e processors. GCD implements task parallelism based on
a locked object cannot be unloaded from memory beforgne thread pool pattern. In both cases we use provided func-
it is unlocked. The priorities are used to provide hints tOyjonajity to achieve task level parallelism within a messag
the run-time system regarding the importance of keeping 8 andler, a task can be implemented ablack in case of

object “in-core” but still allow it to make final decision. GCD or as a method of thmask class or a lambda function
The control layer uses preemptive communication intery, .ase of TBB

nally. A preemptive message interrupts whatever is execut- 5 \,ser defined mobile object must implement initializa-

3The swapping priority assigned to a mobile object is storeide the F'On_' un_'/reg|5trat'0n and de'lse”al_|zat'(_)n methOdStIElh
corresponding mobile pointer data-structure. ization is performed when the object is first created; the



object is unregistered when it has to be moved to anotheiz multi-threaded technology (TBB or GCD)

node and is registered when it is installed on a new node; thé®

object is de-/serialized when it is transferred from/tckdis ¢ multilayer multi-layer | mobile object
Whenever a mobile object is created a mobile pointer iS2 | memory manager | C2ectdirectory | layer

generated. Each mobile pointer contains either a referenc%‘ MPI

to its object if that object is local and in-core or its locati £ | _ database ARMCI

otherwise. Additionally, a mobile pointer of a local mobile § dr':";nOabJ'“;‘r’t object manager T

object is associated with a queue of messages that were 9 DBMS

delivered to the mobile object. When an object is loaded in-¢ disk network

core the message queue is processed. The size of a messafe

gueue influences scheduling and swapping. _ o
Message Passing\ message is composed of a destination Figure 4. Software organization of the MRTS
mobile pointer, a message handler and optional arguments.

A message handler is implemented as a function. When it is

called it is provided with a reference to the correspondindDattern (i.e., r_ne.s.sagehpart]ternl)é AILgrr;]atiyely, anbgpﬁbo b
mobile object (not the mobile pointer) and optional argu-Can assign priorities which makes high priority objects ¢

ments. Messages that are delivered to their destinatioasnod cache_d more often. Flna_llly, an aF?p"Ca“‘?” can force Iogd!n
are stored together with the respective mobile objectss Thi2h oPiectas well as locking an object which means the object

means that if an object is out-of-core its messages are aldd loaded or stays in memory regardless of its access pattern

stored out-of-core. The number of messages in a messa@@d ?rllorl_t%rlesr:fcnvely. Note, ag_appllcgnon_should ba/lv_
queue is stored in the respective mobile pointer. areful with locking too many objects since it can result in

To send a message to a mobile object the following should"MMng out of memory. o
be supplied: a mobile pointer that identifies the destimatio Fi19ure 4 shows the software organization of the MRTS.
mobile object, a message handler and optional arguments.
In case of a local mobile objects the message is queued in
the respective queue. Alternatively, the message is delive
through a one-sided communication mechanism to a last Out-of-core PDR and out-of-core PCDM methods ap-
known node where the object might be located. A remotgpeared in [1] and [2], respectively. In this section, we
procedure call is performed to both deliver the message agescribe in more detail the out-of-core NUPDR method and
well as to notify remote node of the delivery. We are usingits implementation with MRTS. Its in-core versions appeare
the Aggregate Remote Memory Copy Interface (ARMCI)in [32] for 2D and in [5] for 3D.
[30] library for such low-level inter-node communications  The NUPDR is using a master-worker model. The master
The ARMCI library is a portable one-sided communicationstarts by constructing a quad-tree which initially congain
library that can be used in MPI applications and offers ama single leaf enclosing the entire geometry, and an initial
extensive set of functionality in the area of RMA commu- triangulation. Next, a queue of leaves containing pooritual
nication: (1) data transfer operations (2) atomic openatio triangles is generated (we will refer to it as refinement
(3) memory management and synchronization operationgjueue). At this point the master enters a loop which will
and (4) locks. Additionally, the ARMCI library is part only terminate when the refinement queue is empty and no
of the Global Arrays [31] which is popular in scientific workers are computing. Termination of the loop indicates
computing and widely supported on existing and upcominghat the mesh is refined and the algorithm terminates.
supercomputers. In turn, this ensures the MRTS portability Inside the loop, if the refinement queue is not empty and

Object Migration When an object is to be migrated to there is an available worker a leaf is removed from the
another node or stored out-of-core it must be appropriatelgueue, additionally a buffer zone BUF of the leaf (i.e., othe
serialized, i.e., packed. Then again, when an object igeighboring leaves) is also removed from the queue. A leaf
installed on a node or is loaded in-core it has to be deis then passed to an available worker for refinement.
serialized, i.e., unpacked. Due to a potentially complex in If the queue is empty or no workers are available, the
ternal structure of a mobile object the serialization opera master waits for a worker to finish refining. When this
must be defined by the application. Not all mobile objectshappens the leaves that compose the buffer BUF of the
designated as out-of-core are actually unloaded to diskiefined leaf are checked for poor quality triangles. All lesiv
some are cached in memory. To allow a high degree othat have bad triangles are reinserted into the refinement
flexibility for the out-of-core computing we provide severa queue.
instruments of control. An application can choose not to Poor quality triangles are stored as several structures
influence the system altogether, in such case the decisidmased on a ratio between the side length of the enclosing leaf
to load/store mobile objects is made based on their accessd their circumradius. A worker refines a leaf by processing

IIl. OUT-OF-CORENON-UNIFORM PARALLEL
DELAUNAY REFINEMENT



poor quality triangle structures in a loop starting with thet o buf f er to the leaf being refined and frees the memory
lowest ratio (largest triangles). In that loop a queue ofrpooit used for storing its portion of the mesh.
triangles with specific ratio is processed until it is empty. The add to buffer message is used to deliver a

For each poor triangle, a point is computed using aportion of the mesh to another leaf. When add to
deterministic function and is inserted into the mesh. Therbuf f er message is received by a leaf, the counter of
the mesh is updated which could lead to a propagation ofhe buffer leaves is decremented and the argument mesh is
changes into buffer leaves BUF and the creation of poomtegrated into the mesh of receiving mobile object. When
triangles for the current leaf and for the buffer leaves. Asthe counter reaches zero, a message designatedfase
a result, the poor quality triangles are inserted into thes sent to the leaf object (i.e., itself). Thef i ne message
corresponding data structures. takes no arguments.

When both loops complete, the leaf is recursively split The message handler of &f i ne message performs the
while a relation for constructing the quad-tree holds [5].same step as a worker in the NUPDR algorithm. The only
The locally refined mesh and quad-tree leaf are returned tdifference is the following. Instead of updating a globat li
the master. of leaves with poor triangles, a local structure is created

Out-of-core Non-Uniform Parallel Delaunay Refine- and updated through the refinement. After the refinement
ment The MRTS programming model does not supportcompletes, arupdat e message is sent to the refinement
master-worker pattern directly and as such some restructuqueue object. The local list of leaves with poor triangles
ing of the algorithm is required. First, for each leaf of theas well as any changes made to quad-tree are passed as
guad-tree we create a mobile object which holds a portion chrguments to theupdat e message. Then, new mobile
the mesh that is enclosed by this leaf. The refinement queusbjects are created as needed (for every new leaf) and the
is also a mobile object. Additionally, the refinement queuecorresponding portions of the mesh are distributed among
mobile object holds and updates the quad-tree structurthem. Finally, the portions of the mesh that correspond to
internally. the leaves other than the current leaf are returned to their

At the start a single thread creates the first top leaf mobil@wners viar ecr eat e messages.
object and generates the initial mesh. In the process of mesh In the end, when no message handlers are executing and
generation the top leaf could be split and in such cases nemo messages are traveling, we reach the termination condi-
mobile objects are constructed. Each leaf stores its list ofion. At this point the control is returned to the applicatio
poor quality triangles independently of the rest. and the algorithm completes.

Next, a list of leaves that contain poor triangles is Optimization While the algorithm described above works
generated. A message designatgutat e is sent to the correctly, it is not as efficient as it can be. Following are th
refinement queue mobile object and the control is passed toumber of changes we introduced to considerably improve
the MRTS. When the control is returned to the applicationthe performance.
the mesh is fully refined. The refinement queue object is relatively small and re-

The updat e message takes the following arguments: aceives and sends many messages. Therefore, we locked it in
list of changes to the quad-tree, which is a list of mobilememory meaning it will never be unloaded out-of-core.
pointers to the newly created leaves and their relationéo th Since we operate in a shared memory environment, we
existing leaves; a list of mobile pointers of the leaves withtry to minimize the use ofdd to buffer messages.
bad triangles. Instead, we check whether the receiving leaf object is in-

When anupdat e message is received by the refinementcore, and in such a case call the message handler directly.
gueue mobile object, its handler performs the followingeTh When the handler is called directly the sender’s mesh
guad-tree and the refinement queue are updated with the ndwagment is made available to the receiver and does not have
leaves. If the refinement queue is empty (a list of leaves withio be copied. Consequently, the memory occupied by the
bad triangles could be empty) the message handler exits. thesh fragment is not freed andracr eat e message is
not, a leaf is removed from the queue, its buffer BUF isunnecessary.
computed, and the respective leaves are also removed from The leaves that are part of the buffer are locked in memory
the queue. A message designatedasst ruct buffer after they send thadd t o buffer messages or call the
is sent to the leaf and its BUF buffer. The only argumentsespective handlers directly. They do not occupy a sigmifica
of the message are the mobile pointer of the leaf and thamount of memory at this point and do not require a
number of leaves in the buffer. recr eat e message anymore. Instead; @cr eat e mes-

The message handler ebnstruct buffer will do sage handler is called directly and afterwords the objeets a
the following depending on the receiver. If the message isinlocked (i.e., can be unloaded from memory).
received by the leaf object, a counter is created with the Instead of sending a efi ne message, we call the
number of leaves in the buffer. If the message is receivednessage handler directly, thus eliminating the posgibilit
by one of the leaves in the buffer, it sends a messedpt it will be forced out of memory before the message is



delivered. 400
We change the order of the leaves in the refinement queu
based on how many leaves are in their buffers. This way we *®
try to have as many leaves as possible present together ir
core and available for refining. We also check which leaves
are in-core and try to refine the leaves with the most buffer
leaves loaded. 0
Additional improvements come from managing the pri- 0
orities of the out-of-core subsystem. When we remove a
leaf from the refinement queue we check if it is currently
loaded, if it is, we assign it a very high priority to minimize
the possibility it will be unloaded before @aonst r uct Figure 5. Execution times for UPDR and OUPDR for in-core feob
buf f er message arrives. Also, we assign different prioritiessizes
to the leaves of the buffers depending on the order they were
removed from the refinement queue. 250

Findings The NUPDR algorithm requires access to sev-

eral leaves of the quad-tree to refine a single leaf. To
accommodate this we either have to collect all leaves in
one mobile object dynamically on demand or store a single
leaf in each object but then ensure that when the messag
is delivered all related objects are local and in-core. &inc %
the MRTS discourages direct control over mobile objects |
we used the first approach. With optimization the ONUPDR s 1 T 25 w0
using this approach performs similarly to the NUPDR. :
However, this discovery lead us to believe that the ability
to collect several mobile objects during the execution of qzlgure 6. Execution times for NUPDR and ONUPDR for in-corelgpem
mobile message can simplify the development and providgjzes
additional space for optimization.

We introduced a multicast mobile message to the MRTS.
A multicast mobile message is similar to a mobile message
except it can be sent to multiple mobile objects and ensure o
that specific mobile objects are loaded into memory when 3 se
the message is delivered. Note, this is still experimentdl a ﬁm
requires further research and evaluation. .

Instead of a destination mobile pointer, a vector of mobile
pointers is supplied. Additionally, a counter specifies ahhi
objects will receive the message. In the example of the 0 50 100 150 200 250
ONUPDR, we would provide a vector containing mobile tosh size, millon eements
pointers of a leaf and its buffer as the first argument and
1 as the second argument, meaning the message should be o _
delivered onlv to the leaf mobile obiect. Figure 7. Execution times for PCDM and OPCDM for in-core peo

y J sizes

Internally, the MRTS must first collect all mobile objects
from the vector on the same node and in-core, and only after
that the mobile message is delivered. The message is thenemory and 32 dual-cpu Sun Fire 280R servers at 900 MHz
delivered to one or more mobile objects in the vector (dewith 2 GB memory) and STEMS cluster which is part
pending on second argument), order is not important, canf Center for Real-time Computifg(four, four-way SMP
be simultaneously. IBM OpenPower 720 compute nodes, with IBM Power5
processors clocked at 1.62 GHz and 8 GB memory).

We start by evaluating the performance of the control layer

We conducted our evaluation using resources from (1) Scief the MRTS. We tested small problems sizes on STEMS
Clone cluster at the College of William and M&ry64 for all three methods and very large problems were tested
single-cpu Sun Fire V120 servers at 650 MHz with 1 GBon SciClone for in-core methods.
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Figure 8. Execution times for OUPDR for out-of-core problsines Figure 10. Execution times for OPCDM for out-of-core prablsizes
5500 Table |
SINGLE PEPERFORMANCE OFUPDRAND OUPDRMETHODS.
3000
2500 Size | PEs Time (sec) Speed & 103 /sec)
% 200 %109 UPDR | OUPDR | UPDR | OUPDR
. 24 4 294 46 20 33
= 59 9 295 102 22 36
1000 109 | 16 295 176 23 39
500 175 | 25 297 368 24 30
0 255 | 36 293 576 24 28
10 60 110 160 210 260 310 353 49 295 802 24 27
Mesh size, million elements 471 64 300 1133 25 26
[——ONUPDR 2 ~C— ONUPDR 4 ——ONUPDR 8| 588 81 206 1386 24 27
739 | 100 300 1745 25 26
Figure 9. Execution times for ONUPDR for out-of-core prablsizes 874 | 121 294 2111 25 26
1284 | nla n/a 3122 0 26
1967 | nla n/a 4599 0 27
Figure 5 shows the execution times of the UPDR (16 and o
25 PEs) and the OUPDR (16 PEs). The largest problem size SINGLE PEPERFORMANCE o-LiIUePIIIDRAND ONUPDRMETHODS.
on the chart, 175 million elements is too large for UPDR
running on 16 processors. We can see that the performance Size, Time (sec) Speed & 103/sec)
of the UPDR and the OUPDR is very similar (the OUPDR x105 | NUPDR | ONUPDR | NUPDR | ONUPDR
is up to 12% slower) for in-core problem sizes which means 8 17 20 119 100
that the overhead introduced by the MRTS is small. Figure 6 12 2}1 g; Ei gg
shows the execution times of the NUPDR and the ONUPDR 16 35 46 115 86
for 2, 4, and 8 PEs For 4 and 8 PEs the overhead can 29 n/a 157 n/a 46
be as high as 18% which is acceptable. For 2 PEs case 46 nia 322 nia 36
the ONUPDR is up to 41% slower. This is explained by 74 n/a 589 n/a 31
118 n/a 1016 n/a 29
the fact that the NUPDR uses custom memory allocator 188 n/a 1638 n/a 29
that shows much lower overhead than the MRTS memory 301 nla 2702 nla 28

manager in 2 PEs case. Figure 7 shows the execution times
of the PCDM (16 and 25 PEs) and the OPCDM [2] for 8 and

16 processors. As is the case with the UPDR and OUPDR,ethods (time increases almost linearly) on MRTS.
the performance of the OPCDM is very similar to that of

the PCDM (up to 13% overhead) Tables I, Il and Il reflect the performance of the out-of-

Fi 8 9 and 10 d trate th ‘ fthcore layer as well as the performance of the control layer.
out 'gfu (r:?)sre :;m dasr:orage Iz;/ne?gsoﬁhee MeR_ﬁJ_gr ('?'rr:g?/nsck?m?v theS e are interested in the performance of a single PE and use

e ' d metric which is computed aSpeed = =2, where
execution times of the OUPDR (8 and 16 PEs), ONUPDR (2 pee P pee TxN

'S is the size of the problem (i.e., number of mesh elements),
4 agld 8 PE_? and SPEDdM (8 ar:d thtEEtSzhfor very Ifargef is the total execution time and¥ is the number of PEs.
problems. These charts demonstrate that the size€ ol VEo the execution time of the original application is from

large problems do not degrade the performance of th%Ider SciClone cluster since they need the aggregate memory

5The NUPDR and current implementation of the ONUPDR are share of over a hundred processors. The MRTS appllcatlons run
memory applications and as such are restricted to a single no on the newer faster STEMS cluster and have faster per PE



Table Il Table V
SINGLE PEPERFORMANCE OFPCDMAND OPCDMMETHODS. OVERLAP OF COMPUTATION, SYNCHRONIZATION AND OUT-OF-CORE
DISK IO IN THE ONUPDR.

Size | PEs Time (sec) Speed & 103 /sec)
%106 PCDM | OPCDM | PCDM | OPCDM Size | Time | Comp Sync Disk Overlap (%)
30 4 308 73 24 26 x105 | (sec) | avg (%) | avg (%) | avg (%) | min | max | avg
59 8 296 101 25 37 8 20 98 2 0 0 0 0
122 16 319 163 24 47 9 27 99 1 0 0 0 0
238 32 310 425 24 35 12 33 98 2 0 0 0 0
366 48 327 707 23 32 16 46 98 2 0 0 0 0
480 64 304 918 25 33 29 157 51 1 81 5 38 33
706 96 324 1408 23 31 46 322 40 1 103 7 52 43
963 | 128 299 1772 25 34 74 589 36 1 112 7 56 48
1074 | nla n/a 1986 n/a 34 118 | 1016 35 1 116 17 58 52
1235 | n/a n/a 2256 n/a 34 188 | 1638 32 1 123 18 64 56
1480 | nla n/a 2614 n/a 35 301 | 2702 33 0 124 17 64 | 58
1662 | n/a n/a 2900 n/a 36
1864 | n/a n/a 3285 n/a 35 Table VI
OVERLAP OF COMPUTATION, COMMUNICATION AND OUT-OF-CORE
Table IV DISK IO IN THE OPCDM.
OVERLAP OF COMPUTATION COMMUNICATION AND OUT-OF-CORE
DISK IO INTHE OUPDR. Size | Time | Comp | Comm Disk Overlap (%)
x10% | (sec) | avg (%) | avg (%) | avg (%) | min | max | avg
Size | Time | Comp | Comm | Disk Overlap (%) 30 73 29 53 0 0 2 2
x10% | (sec) (%) (%) | (%) | min | max | avg 59 101 64 36 0 0 0 0
24 46 88 18 0 1 7 6 122 | 163 94 12 0 2 7 5
59 | 102 85 16 0 0 2 1 238 | 425 66 7 50 4| 27| 23
109 | 176 86 21 0 2 8 7 366 | 707 62 5 64 8| 36| 30
175 368 65 15 36 4 19 16 480 918 60 4 72 6 43 36
255 | 576 61 12 51 8| 29| 24 706 | 1408 61 3 76 | 10| 50| 40
353 802 58 11 61 6 35 30 963 | 1772 57 3 87 6 56 a7
471 | 1133 57 13 64 11 38 33 1074 | 1986 58 3 88 8 63 49
588 | 1386 55 13 70 5 46 38 1235 | 2256 59 3 91 9 65 53
739 | 1745 54 14\ 73 5| 48] 41 1480 | 2614 58 3 95 | 14| 67| 57
874 | 2111 51 18 73 6| 54| 42 1662 | 2900 59 4 98| 10| 73| 60
1284 | 3122 52 18 76 5 57 46 1864 | 3285 60 4 97 7 74 62
1967 | 4599 53 16 82 20 63 50
Table VII
THE COMPARISON OF PERFORMANCE OF THE COMPUTING LAYER
speed in most cases. Rather than compare the actual speeds IMPLEMENTATIONS.

in those tables we want to see the trend as we increase the_ _ — .

. L L. Size, | Threading Building Blocks Grand Central Dispatch
problem size. We can see that the original applications as, ;s Ti(sec) | T4(sec) | Spdup | Ti(sec) | T4(sec)| Spdup
well as the MRTS implementations seem to maintain mor¢ 797 [ 4920 | 24.94 | 1.97 | 46.29| 2754| 1.68
or less constant speed. This means that as we increase the9.49 | 60.98| 31.88| 191 | 61.89| 34.05| 1.82
problem size the MRTS is able to sustain the performancg 11.98 | 7038} 3293} 214} 7117} 3784 188
level. Additionally, for the original applications this rzes 1604 ] 11459] ©6.66] 202] 11531] 6€011] 192
they scale rather well [5]-[7], [11].

Tables IV, V and VI are presented to demonstrate the out-
of-core performance of the MRTS applications. These tablegather well and accommodate data-intensive application.
show computation, communication (or synchronization for The MRTS can use and supports either GCD or TBB
ONUPDR) and disk I/O as a percentage of total executionmulti-threading libraries to utilize shared-memory cormpu
time. The last three columns show overlap of computaing. Since GCD availability on non-Apple systems is very
tion, communication/synchronization and disk 1/0 which welimited yet we had to use an older system running an
compute averlap = ComptConimt Disk—Total , 10%,  experimental version of FreeBSD: Dell PowerEdge 6600
where Comp is the computation time(omm is the com- ~ with 4 Intel Xeon MP 1.47 GHz processor and 16 GB of
munication/synchronization timd)isk is the disk I/O time  memaory.
and T'otal is the total execution time. MRTS is designed Table VIl shows sequential time (T1), parallel time with
to promote overlapping of communication and I/O and our4 PEs (T4) and relative speedup (Spdup) for the ONUPDR
data show we have been very successful at it. The overlagith TBB and GCD implementations of the computing layer.
is over 50% for large problems and can be as high as 62%gize is the number of elements in the resulting mesh, a pipe
This means the MRTS is capable of tolerating high latenciesross-section geometry was used for all experiments. The




speedup is comparable to the speedup of the NUPDR, Wesources as well as effective utilization of those resources
can see that GCD implementation is slightly slower yet weThe runtime system introduces small overhead (up to 18%
can see similar trends for both implementations. on most configurations) and achieves high overlap of com-
munication and disk I/O (up to 62%). As such it does
not sacrifice performance and is capable of tolerating high
We presented the Multi-layered Run-Time System, acommunication and 1/O latencies. The API and and the
practical parallel out-of-core runtime system designed fo programming model of the runtime system make the task of
effective utilization of computing resources without sac-transforming an in-core application into an out-of-coreon
rificing performance. We used traditional CoWs and out-much simpler than developing it from scratch. Design and
of-core computing paradigm to perform an evaluation ofimplementation of ONUPDR which is based on state of the
our implementation using three parallel unstructured meslart in-core NUPDR is an example of such transformation.
generation methods with a wide spectrum of memory access
patterns and communication/synchronization requirement
to stress test the MRTS. In particular, the NUPDR was used This work was performed in part using computational
to test multi-threaded performance, the UPDR was used téacilities at the College of William and Mary which were
test structured communication with some synchronizatiorenabled by grants from Sun Microsystems, the National
and the PCDM was used to test fully asynchronous comScience Foundation, and Virginia’s Commonwealth Tech-
munication. Furthermore, each application tested theobut- nology Research Fund. The first author wants to thank Old
core subsystem. Dominion University and Computer Science Department for
The MRTS allows for shared memory, distributed memorytheir hospitality.
and out-of-core computing to enable effective computing
on a wide range of systems with varying capabilities and
potentially leverage memory and network hierarchies of [1] A. Kot, A. Chernikov, and N. Chrisochoides, “Effective
emerging supercomputers. It is implemented on top of out-of-core parallel delaunay mesh refinement using @ff-th
established software libraries and standards like TBB/GCD  Shelf software,” in20th IEEE International Parallel and
for multi-threading and ARMCI/MPI for both one- and two- Distributed Processing SymposiurRhodes Island, Greece,
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