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Abstract—We present an out-of-core run-time system that
supports effective parallel computation of large irregular and
adaptive problems, in particular unstructured mesh generation
(PUMG). PUMG is a highly challenging application due to
intensive memory accesses, unpredictable communication pat-
terns, and variable and irregular data dependencies reflecting
the unstructured spatial connectivity of mesh elements.

Our runtime system allows to transform the footprint of
parallel applications from wide and shallow into narrow and
deep by extending the memory utilization to the out-of-
core level. It simplifies and streamlines the development of
otherwise highly time consuming out-of-core applicationsas
well as the converting of existing applications. It utilizes disk,
network and memory hierarchy to achieve high utilization
of computing resources without sacrificing performance with
PUMG. The runtime system combines different programming
paradigms: multi-threading within the nodes using industrial
strength software framework, one-sided active messages among
the nodes, and an out-of-core subsystem for managing large
datasets.

We performed an evaluation on traditional parallel plat-
forms to stress test all layers of the run-time system using three
different PUMG methods with significantly varying communi-
cation and synchronization patterns. We demonstrated high
overlap in computation, communication, and disk I/O which
results in good performance when computing large out-of-core
problems. The runtime system adds very small overhead (up
to 18% on most configurations) when computing in-core which
means performance is not compromised.

I. I NTRODUCTION

With the increasing computational demands of scientific
applications many existing parallel codes need to be scaled
by several orders of magnitude. At the same time many
of those codes are memory bound and do not take full
advantage of added computing power. In fact, it is not
unusual for such applications to require hundreds of nodes to
achieve sufficient aggregate memory and to run only several
minutes. Also, not all applications are suited for such high
degree of parallelism which results in many processors/cores
idling most of the time.

This work is supported in part by NSF grants CCF-0833081, CSR-
0719929, CCS-0750901 and CCF-0916526.

Our solution is to use computational resources effectively
by employing less computing power (i.e., fewer nodes) and
using out-of-core approach for augmenting the memory with
disk storage. We developed several out-of-core applications
and demonstrated in [1], [2] the effectiveness of this ap-
proach. Unfortunately, a task to adapt an existing parallel
scientific code or develop an out-of-core code from scratch
is both challenging and time consuming.

To simplify and streamline this process we designed and
implemented a practical out-of-core runtime system that
supports the execution of large scale parallel applications
on a fraction of the nodes that otherwise would be normally
required. As such the parallel codes can utilize computing
resources effectively and provide end users with added
benefits such as abilities to: (1) increase the problem size
using the same hardware setup or (2) keep the same problem
size but use less of hardware resources (e.g., use fewer
cores/nodes in a cluster). Our contribution is an efficient
runtime C library that features an easy-to-use API for
overlapping I/O and communication with computation, in
addition to communication and load balancing functionality
supported by its predecessor [3].

We evaluated the runtime system using parallel unstruc-
tured mesh generation, a challenging adaptive and irregular
application. Mesh generation is memory-intensive, as op-
posed to computation-intensive, and therefore all data trans-
mission latencies, such as RAM, disc, and network, critically
influence the overall performance. Moreover, the number of
elements changes (grows) throughout the execution of the
application, and the structure of the mesh heavily depends
on the input geometry, hence memory allocation needs, for
each subproblem, are different.

It may seem counter intuitive but using our out-of-
core paradigm with fewer nodes on a shared computing
resource (as in multiple users using a job scheduler) could
lead to a shorter time between a user submitting his job
and getting the results. For example, Parallel Constrained
Delaunay Meshing requires about 64GB of memory to
generate a mesh of 238 million elements which requires
32 nodes (2GB per node) on our university cluster. The
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Figure 1. Wait-in-queue time statistics for parallel jobs collected from the
last four and a half years from a 300+ processor cluster at theCollege of
William and Mary.

execution time is 310 seconds. When ported to our runtime
system, the same computation can be done with 16 nodes
or less and it takes 731 seconds (16 nodes). Figure 1 shows
an example of how long jobs have to wait before they start
executing depending on how many nodes they request. On
this specific small cluster, requests for less than 16 nodes
are scheduled within a couple of minutes while request for
32 nodes wait on average for half an hour, and requests for
over a hundred nodes take several hours to start. On average,
the out-of-core job in our example will finish in about 14
minutes while the in-core job needs about 35 minutes!

Our work provides additional options to researchers who
make use of long running, large scale computing codes. The
obvious benefit is to be able to run much larger problems
than otherwise possible with limited computing resources.
For example, using the proposed system one can utilize a
dedicated small workgroup cluster rather than a larger more
powerful but shared supercomputer. Another benefit is the
ability to use fewer nodes on a shared computing resources
and get the results faster by shortening the wall-clock time.

Contribution Design, implementation and evaluation of
an out-of-core runtime system aimed at large problems and
effective utilization of computational resources. Relatively
simple and streamlined process to transform an in-core ap-
plication into an out-of-core one. Design and implementation
of an out-of-core mesh generation application based on state-
of-the-art in-core version.

A. Mesh Generation Applications

Parallel mesh generation procedures decompose the orig-
inal mesh generation problem into smaller subproblems
that can be solved (meshed) in parallel, see Figure 2.
The subproblems can be formulated as either tightly [4]
or partially [5]–[7] coupled or even decoupled [8]. The
coupling of the subproblems (i.e., the degree of dependency)
determines the intensity of the communication and of the
synchronization between processing elements working on
separate subproblems. Our results with the tightly coupled

Figure 2. Decomposition of a 2D slice of a human brain MRI into1024
subdomains mapped onto 8 processors.

approach [4], [9] indicate that it has high overheads for
efficient parallel execution, while the domain decomposition
for the 3D decoupled method is still an open problem [10].
Therefore, we focus on the partially coupled methods. We
stress test the key components of the runtime system (I/O,
SMT, and network) using the following three different
coarse grain partially coupled approaches to parallel mesh
generation.

Uniform Parallel Delaunay Refinement (UPDR) The
UPDR method/software presented in [7], [11] is based on
the following key idea: for any two given subdomainsA and
B and their common buffer zoneZ betweenA and B the
mesher would mesh concurrentlyA unionZ andB unionZ

and then remeshZ; the process would stop, asZ is designed
to not require any further refinement. This approach balances
trade-offs between the costs of data decomposition and of
communication, i.e., it utilizes a simple data decomposition
method at the cost of some communication and global
synchronization. The communication is structured such that
during each phase of the algorithm all processes know the
recipient and/or the sender of the data that they work with.

Non-Uniform Parallel Delaunay Refinement (NUPDR)
The NUPDR method/software [5] extends the UPDR for
the case when the application requires that the final mesh
have graded (non-uniform) spatial element sizes in different
areas of the domain. This method utilizes a quad-tree data
structure that distributes the data into blocks corresponding
to the leaves of the quad-tree. Due to the variable sizes
of the leaves the communicating processes also cannot be
known in advance, although there is some regularity in the
communication pattern because of the structured way of
constructing the quad-tree.

Parallel Constrained Delaunay Meshing (PCDM)The
PCDM method/software [6] utilizes the domain decompo-
sition, as opposed to the data distribution, approach to par-
allelization. I.e., the elements of the resulting mesh strictly
conform to the subdomain boundaries, while with the data
distribution approach they only overlap in a more loosely
defined way. However, the spatial relationship among the
subdomains looses its regularity, and the communication



graph becomes completely unstructured. At the same time,
this method sends only asynchronous small messages which
can be aggregated to minimize startup overheads, and ex-
hibits low overall communication costs. This makes the
software suitable to exploit concurrency at the level of an
SMP node and a cluster of nodes. In addition, the single-
node performance is comparable to that of the fastest to our
knowledge sequential guaranteed quality Delaunay meshing
library (Triangle). Our experimental results show very good
(sub-linear) scalability on traditional parallel architectures.

B. Related Work

Distributed shared memory systems such as C Region
Library (CRL) [12] provide region-based shared address
space programming model on distributed architectures. CRL
hides message passing and instead achieves parallelism
through accesses to shared regions of virtual memory. In
[13], [14] the authors propose to define a common data
model and data-structure neutral interfaces for mesh gen-
eration and adaptive mesh refinement among other services
for scientific applications on future petascale computer ar-
chitectures. Zoltan [15] provides graph-based partitioning
algorithms as well as geometric load balancing algorithms.
Zoltan requires synchronization during load balancing and
behaves similarly to other stop-and-repartition libraries we
reviewed [16]. Charm++ [17] is a parallel dialect of C++
and an adaptive runtime system which provides load bal-
ancing, fault tolerance and automatic checkpointing. Parallel
programming languages (e.g., Chapel [18], Co-array For-
tran [19], X10 [20]) try to improve the programmability of
parallel computers by supporting partitioned global address
space and abstractions for various forms of parallelism.
None of the above provide explicit support for out-of-core
computing. In [21] authors proposed to use parallel octrees
and space-filling curves to generate and adapt massive octree
meshes. They implemented a parallel octree meshing tool
and used it for terascale finite element simulations. The
Adaptive Large-scale Parallel Simulations (ALPS) [22] is
a library providing dynamic mesh adaptivity and redistri-
bution. ALPS uses parallel octree-based hexahedral finite
element meshes and dynamic load balancing based on space-
filling curves. In [23] the authors present a parallel octree-
based adaptive mesh finite element library for petascale
computing. However, this library targets semi-structured
hexahedral finite element meshes, while we generate un-
structured (i.e., triangular and tetrahedral) meshes.

II. M ULTI -LAYERED RUN-TIME SYSTEM

A. Requirements

The three PUMG methods we describe in this paper have
the following common characteristics:

1) spatial locality — each processing element (PE) works
with a subset of mesh elements that cover a certain

geometrically defined area, and most of the computa-
tion is performed on data that does not have outside
dependencies;

2) although the communication patterns vary among the
methods, the common property is that the size of the
data that the PEs need to exchange is relatively small
compared to the sizes of the subdomains;

3) local synchronization — changes in a subdomain
usually affect only neighbors of that subdomain, and
global synchronization is not required;

4) irregular access pattern — it is not possible to predict
the exact mesh elements and memory locations that
are accessed;

5) SPMD data model — single program is used to
process portions of the dataset in parallel;

6) interoperability — to simplify the porting process we
should not obstruct the MPI or any other form of
communication used by the rest of the application (i.e.,
FE solver).

B. Background

We adopt themobile objectwhich is defined in [3] as
a location-independent container implemented by the run-
time system to store application data. The decision to define
mobile objects is left to an application programmer, but it
is recommended to be used for representing larger semi-
isolated fragments of a dataset (e.g., subdomains). A mobile
object can be freely moved by the run-time system between
nodes and is globally addressable.

A messageis an amalgamation of data transfer and a
remote procedure call [24]. It is one-sided, that means the
receiving node does not have to post an explicit receive and
is not interrupted when a message arrives.

A message handleris a function defined by an application
and registered with a mobile object. A message is deliv-
ered to a mobile object by invocation of a corresponding
message handler on a node where the mobile object is
located. Message handlers, messages and mobile objects
allow encapsulation of data represented by mobile objects.

A mobile pointer is a global identifier and is used to
reference a mobile object. Because a mobile object is not
restricted to any specific node a message is addressed to the
mobile pointer and the run-time system routes the message
appropriately. Order of messages is preserved only between
two endpoints.

In the course of out-of-core computing mobile objects can
be unloaded to and re-loaded from disk. Mobile objects sup-
port serialization1 by implementing serialization interfaces
provided by the run-time system.

1Serialization is the process of transforming the memory representation
of an object to a data format suitable for storage or transmission.



C. Programming Model

The programming model is centered around the mobile
object concept. The run-time system is designed for data
centric computation where most of communication happens
between mobile objects rather than between processors.
Parallelism is achieved by executing message handlers si-
multaneously on multiple nodes and multiple tasks within
each message handler. The MRTS tries to achieve maximum
utilization by executing as many tasks as available yet not
oversubscribing the PEs which can lead to unnecessary
context switches and performance degradation.

The usual application for the run-time system has its
dataset broken into a collection of mobile objects. We
encourageoverdecomposition, that is the problem is broken
into N subproblems andN ≫ P , whereP is the number of
PEs. It allows greater flexibility for dynamic load balancing
[25] and is even more important for out-of-core computing
where the number of objects allowed in memory simultane-
ously is limited by available physical memory.

At the beginning, an application performs initial prepro-
cessing (if necessary), creates mobile objects, defines serial-
ization interfaces, registers message handlers, distributes the
mobile objects between nodes (optional), initiates the paral-
lel phase by posting the initial messages (e.g., main/driver
function) and then passes control to the run-time system.

The execution progresses by executing messages handlers,
posting messages and dynamically creating new mobile
objects. A message is posted to perform an operation on
the data of a particular mobile object. Messages can be
addressed to local (including self), out-of-core and remote
mobile objects. In fact, we strongly recommend to use
messages rather than function calls or other means of
communication outside of the context of the mobile object.
Otherwise, the application is responsible for load balancing
and to check and ensure availability of the data it tries to
access.

A message addressed to a local mobile object is inserted
into its message queue. If the object is local but out-of-
core the message is queued and the object is scheduled to
be loaded in-core. If the object is remote the message is
routed to the corresponding node and processed there. The
processing of a message from a remote node is the same as
for a local message.

The bulk of parallel computations are performed inside
message handlers. When no message handlers are executing
and no messages are being delivered the run-time system
detects a termination condition. At this point the control
is passed back to the application. Usually, at this point
the application performs post-processing (if necessary) and
terminates. Although, it is possible to start another phaseof
computing with the run-time system.

Figure 3. Memory organization and global addressing of the MRTS

D. Organization

The run-time system is organized into layers according
to the principle of separation of concerns (see Fig. 3).
Parallelism is exploited via multi-threading on a node level
and via message passing between nodes. The memory space
available to an application consists of local, disk and remote
memory. Hence, we call our run-time system the Multi-
layered Run-Time System (MRTS). The MRTS is organized
into the following layers: the storage layer, the out-of-core
layer, the control layer and the computing layer.

The storage layeris used for managing mobile objects
stored out-of-core. The underlying storage facility is hidden
from the application and can utilize regular files, block de-
vices and databases2. Blocking and non-blocking operations
for loading and storing a mobile object are provided. This
functionality is primarily used by the MRTS internally and
is not exposed to an application.

The out-of-core layeris responsible to keep track of mo-
bile objects and control swapping (i.e., make decision when
and which objects should be un-/loaded from/to memory.
The out-of-core layer also maintains a cache to prefetch
mobile objects depending on swapping scheme and input
from application.

The control layeris responsible for delivering messages
either locally or remotely and controlling migration of
objects between nodes. Object location is determined by
querying the mobile object distributed directory. Depending
on the location of the object the message can be routed to a
remote node or queued for local execution. The control layer

2The evaluation of different storage subsystems is out of scope of this
paper and will be submitted elsewhere. Out-of-core objectsare stored in
a single large file and meta-data is kept in memory at all timesfor all
experiments presented in this paper.



decides the order in which message queues of local mobile
objects are processed. The input from the control layer
influences the swapping decisions of the out-of-core layer.
In addition, the control layer provides memory management
primitives to an application [26].

The computing layeris used to provide uniform interface
to various multi-threading technologies employed in the
MRTS. We encourage the use oftasks– fragments of code
that can run in parallel and are expected to complete without
blocking. Each message handler function viewed as a task
once it is scheduled to be executed and can spawn new tasks
during the execution. Unlike messages tasks can only access
data of the corresponding mobile object. However, tasks are
lightweight and can be used to exploit fine-grain parallelism
without much overhead. The computing layer manages the
execution of message handlers and tasks, it is responsible
for memory allocation, synchronization and load balancing
the tasks between PEs (i.e., cores, nodes, racks).

E. Implementation

Software layers The storage layer implements several
swapping schemes which are based on popular cache algo-
rithms. In addition to the least recently used (LRU) scheme
we implemented the least frequently used (LFU), the most
recently used (MRU), the most used (MU) and the least
used (LU) schemes. While the LRU scheme enjoys highest
performance most of the time, for some applications (e.g.,
PCDM) the LFU can be up to 7% faster.

A set of swapping thresholds is used to influence as well
as to force swapping in extreme cases. The hard swapping
threshold is defined to be a multiple of the size of the largest
mobile object currently stored on disk. The actual value can
be set at the initialization of the MRTS, the default is two.
This threshold is checked whenever the application wants
to allocate additional memory. If the amount of memory
after allocation is less than the threshold unused objects
are forcefully unloaded to free memory. The soft swapping
threshold is defined as a fraction of the total available
memory and is used to influence caching of the out-of-core
mobile objects. When the amount of free memory drops
below the soft threshold the storage layer is “advised” to start
swapping. The soft threshold can be set at the initialization
of the MRTS, the default is one half.

Additionally, the out-of-core layer provides an API to
assign swapping priorities to mobile objects3 and directly
lock/unlock mobile objects. The locking is straightforward,
a locked object cannot be unloaded from memory before
it is unlocked. The priorities are used to provide hints to
the run-time system regarding the importance of keeping an
object “in-core” but still allow it to make final decision.

The control layer uses preemptive communication inter-
nally. A preemptive message interrupts whatever is execut-

3The swapping priority assigned to a mobile object is stored inside the
corresponding mobile pointer data-structure.

ing and only returns control when it finishes. Executing
potentially long running mobile messages can lead to high
overheads. Therefore, application messages are queued upon
arrival and executed when appropriate. When a message
is removed from the queue it is “delivered” by executing
its respective message handler. When the message handler
terminates the control layer makes a decision whether to
continue to process the message queue of the current object
or switch to another object or serve systems aspects like
information dissemination and/or decision making for load-
balancing or swapping. The control layer keeps track of
all messages, including the messages of out-of-core mobile
objects, and assigns swapping priorities depending on the
number of messages and the order they were delivered.
Depending on the amount of work (i.e., number of messages)
in-core the control layer can “advise” the out-of-core layer
to initiate swapping.

Mobile Objects and Threads The mobile object direc-
tory that stores mobile pointers is a distributed directory
with lazy updates [27], for a mobile object that resides on
a remote node its last known location is stored. When a
messages is sent to that location it is not guaranteed that the
destination mobile object will be there. If not, the message
is forwarded to the last known location of the object on
that node. When the message finally arrives to the object’s
current location an update service message is sent back
to all nodes through which the message was routed. We
experimented with different location management policies
and determined that lazy updates provides good compromise
between accuracy and update overhead [27].

The computing layer provides a lightweight mostly-
wrapper interface to multi-threading libraries. We encourage
and support multi-threading within a message handler. Each
message handler is a task and can be further broken into
child tasks and some of those tasks can be executed in par-
allel. We utilize two different but similar industrial-strength
multi-threading programming technologies (only one can be
active): (1) Intel Threading Building Blocks (TBB) [28] is
a C++ template library designed to simplify and streamline
parallel programming for C++ developers. It provides high-
level abstraction, is based on generic programming and
is designed to hide low level details of managing threads
and supports nested parallelism; (2) Grand Central Dis-
patch (GCD) [29] is an Apple technology used to optimize
application support for systems with multiple and/or multi-
core processors. GCD implements task parallelism based on
the thread pool pattern. In both cases we use provided func-
tionality to achieve task level parallelism within a message
handler, a task can be implemented as ablock in case of
GCD or as a method of thetaskclass or a lambda function
in case of TBB.

A user defined mobile object must implement initializa-
tion, un-/registration and de-/serialization methods. Initial-
ization is performed when the object is first created; the



object is unregistered when it has to be moved to another
node and is registered when it is installed on a new node; the
object is de-/serialized when it is transferred from/to disk.

Whenever a mobile object is created a mobile pointer is
generated. Each mobile pointer contains either a reference
to its object if that object is local and in-core or its location
otherwise. Additionally, a mobile pointer of a local mobile
object is associated with a queue of messages that were
delivered to the mobile object. When an object is loaded in-
core the message queue is processed. The size of a message
queue influences scheduling and swapping.

Message PassingA message is composed of a destination
mobile pointer, a message handler and optional arguments.
A message handler is implemented as a function. When it is
called it is provided with a reference to the corresponding
mobile object (not the mobile pointer) and optional argu-
ments. Messages that are delivered to their destination nodes
are stored together with the respective mobile objects. This
means that if an object is out-of-core its messages are also
stored out-of-core. The number of messages in a message
queue is stored in the respective mobile pointer.

To send a message to a mobile object the following should
be supplied: a mobile pointer that identifies the destination
mobile object, a message handler and optional arguments.
In case of a local mobile objects the message is queued in
the respective queue. Alternatively, the message is delivered
through a one-sided communication mechanism to a last
known node where the object might be located. A remote
procedure call is performed to both deliver the message as
well as to notify remote node of the delivery. We are using
the Aggregate Remote Memory Copy Interface (ARMCI)
[30] library for such low-level inter-node communications.
The ARMCI library is a portable one-sided communication
library that can be used in MPI applications and offers an
extensive set of functionality in the area of RMA commu-
nication: (1) data transfer operations (2) atomic operations
(3) memory management and synchronization operations,
and (4) locks. Additionally, the ARMCI library is part
of the Global Arrays [31] which is popular in scientific
computing and widely supported on existing and upcoming
supercomputers. In turn, this ensures the MRTS portability.

Object Migration When an object is to be migrated to
another node or stored out-of-core it must be appropriately
serialized, i.e., packed. Then again, when an object is
installed on a node or is loaded in-core it has to be de-
serialized, i.e., unpacked. Due to a potentially complex in-
ternal structure of a mobile object the serialization operation
must be defined by the application. Not all mobile objects
designated as out-of-core are actually unloaded to disk,
some are cached in memory. To allow a high degree of
flexibility for the out-of-core computing we provide several
instruments of control. An application can choose not to
influence the system altogether, in such case the decision
to load/store mobile objects is made based on their access
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Figure 4. Software organization of the MRTS

pattern (i.e., message pattern). Alternatively, an application
can assign priorities which makes high priority objects to be
cached more often. Finally, an application can force loading
an object as well as locking an object which means the object
is loaded or stays in memory regardless of its access pattern
and priority respectively. Note, an application should be very
careful with locking too many objects since it can result in
running out of memory.

Figure 4 shows the software organization of the MRTS.

III. O UT-OF-CORE NON-UNIFORM PARALLEL

DELAUNAY REFINEMENT

Out-of-core PDR and out-of-core PCDM methods ap-
peared in [1] and [2], respectively. In this section, we
describe in more detail the out-of-core NUPDR method and
its implementation with MRTS. Its in-core versions appeared
in [32] for 2D and in [5] for 3D.

The NUPDR is using a master-worker model. The master
starts by constructing a quad-tree which initially contains
a single leaf enclosing the entire geometry, and an initial
triangulation. Next, a queue of leaves containing poor quality
triangles is generated (we will refer to it as refinement
queue). At this point the master enters a loop which will
only terminate when the refinement queue is empty and no
workers are computing. Termination of the loop indicates
that the mesh is refined and the algorithm terminates.

Inside the loop, if the refinement queue is not empty and
there is an available worker a leaf is removed from the
queue, additionally a buffer zone BUF of the leaf (i.e., other
neighboring leaves) is also removed from the queue. A leaf
is then passed to an available worker for refinement.

If the queue is empty or no workers are available, the
master waits for a worker to finish refining. When this
happens the leaves that compose the buffer BUF of the
refined leaf are checked for poor quality triangles. All leaves
that have bad triangles are reinserted into the refinement
queue.

Poor quality triangles are stored as several structures
based on a ratio between the side length of the enclosing leaf
and their circumradius. A worker refines a leaf by processing



poor quality triangle structures in a loop starting with the
lowest ratio (largest triangles). In that loop a queue of poor
triangles with specific ratio is processed until it is empty.

For each poor triangle, a point is computed using a
deterministic function and is inserted into the mesh. Then
the mesh is updated which could lead to a propagation of
changes into buffer leaves BUF and the creation of poor
triangles for the current leaf and for the buffer leaves. As
a result, the poor quality triangles are inserted into the
corresponding data structures.

When both loops complete, the leaf is recursively split
while a relation for constructing the quad-tree holds [5].
The locally refined mesh and quad-tree leaf are returned to
the master.

Out-of-core Non-Uniform Parallel Delaunay Refine-
ment The MRTS programming model does not support
master-worker pattern directly and as such some restructur-
ing of the algorithm is required. First, for each leaf of the
quad-tree we create a mobile object which holds a portion of
the mesh that is enclosed by this leaf. The refinement queue
is also a mobile object. Additionally, the refinement queue
mobile object holds and updates the quad-tree structure
internally.

At the start a single thread creates the first top leaf mobile
object and generates the initial mesh. In the process of mesh
generation the top leaf could be split and in such cases new
mobile objects are constructed. Each leaf stores its list of
poor quality triangles independently of the rest.

Next, a list of leaves that contain poor triangles is
generated. A message designatedupdate is sent to the
refinement queue mobile object and the control is passed to
the MRTS. When the control is returned to the application
the mesh is fully refined.

The update message takes the following arguments: a
list of changes to the quad-tree, which is a list of mobile
pointers to the newly created leaves and their relation to the
existing leaves; a list of mobile pointers of the leaves with
bad triangles.

When anupdate message is received by the refinement
queue mobile object, its handler performs the following. The
quad-tree and the refinement queue are updated with the new
leaves. If the refinement queue is empty (a list of leaves with
bad triangles could be empty) the message handler exits. If
not, a leaf is removed from the queue, its buffer BUF is
computed, and the respective leaves are also removed from
the queue. A message designated asconstruct buffer
is sent to the leaf and its BUF buffer. The only arguments
of the message are the mobile pointer of the leaf and the
number of leaves in the buffer.

The message handler ofconstruct buffer will do
the following depending on the receiver. If the message is
received by the leaf object, a counter is created with the
number of leaves in the buffer. If the message is received
by one of the leaves in the buffer, it sends a messageadd

to buffer to the leaf being refined and frees the memory
it used for storing its portion of the mesh.

The add to buffer message is used to deliver a
portion of the mesh to another leaf. When anadd to
buffer message is received by a leaf, the counter of
the buffer leaves is decremented and the argument mesh is
integrated into the mesh of receiving mobile object. When
the counter reaches zero, a message designated asrefine
is sent to the leaf object (i.e., itself). Therefine message
takes no arguments.

The message handler of arefine message performs the
same step as a worker in the NUPDR algorithm. The only
difference is the following. Instead of updating a global list
of leaves with poor triangles, a local structure is created
and updated through the refinement. After the refinement
completes, anupdate message is sent to the refinement
queue object. The local list of leaves with poor triangles
as well as any changes made to quad-tree are passed as
arguments to theupdate message. Then, new mobile
objects are created as needed (for every new leaf) and the
corresponding portions of the mesh are distributed among
them. Finally, the portions of the mesh that correspond to
the leaves other than the current leaf are returned to their
owners viarecreate messages.

In the end, when no message handlers are executing and
no messages are traveling, we reach the termination condi-
tion. At this point the control is returned to the application
and the algorithm completes.

Optimization While the algorithm described above works
correctly, it is not as efficient as it can be. Following are the
number of changes we introduced to considerably improve
the performance.

The refinement queue object is relatively small and re-
ceives and sends many messages. Therefore, we locked it in
memory meaning it will never be unloaded out-of-core.

Since we operate in a shared memory environment, we
try to minimize the use ofadd to buffer messages.
Instead, we check whether the receiving leaf object is in-
core, and in such a case call the message handler directly.
When the handler is called directly the sender’s mesh
fragment is made available to the receiver and does not have
to be copied. Consequently, the memory occupied by the
mesh fragment is not freed and arecreate message is
unnecessary.

The leaves that are part of the buffer are locked in memory
after they send theadd to buffer messages or call the
respective handlers directly. They do not occupy a significant
amount of memory at this point and do not require a
recreate message anymore. Instead, arecreate mes-
sage handler is called directly and afterwords the objects are
unlocked (i.e., can be unloaded from memory).

Instead of sending arefine message, we call the
message handler directly, thus eliminating the possibility
it will be forced out of memory before the message is



delivered.
We change the order of the leaves in the refinement queue

based on how many leaves are in their buffers. This way we
try to have as many leaves as possible present together in-
core and available for refining. We also check which leaves
are in-core and try to refine the leaves with the most buffer
leaves loaded.

Additional improvements come from managing the pri-
orities of the out-of-core subsystem. When we remove a
leaf from the refinement queue we check if it is currently
loaded, if it is, we assign it a very high priority to minimize
the possibility it will be unloaded before aconstruct
buffermessage arrives. Also, we assign different priorities
to the leaves of the buffers depending on the order they were
removed from the refinement queue.

Findings The NUPDR algorithm requires access to sev-
eral leaves of the quad-tree to refine a single leaf. To
accommodate this we either have to collect all leaves in
one mobile object dynamically on demand or store a single
leaf in each object but then ensure that when the message
is delivered all related objects are local and in-core. Since
the MRTS discourages direct control over mobile objects
we used the first approach. With optimization the ONUPDR
using this approach performs similarly to the NUPDR.
However, this discovery lead us to believe that the ability
to collect several mobile objects during the execution of a
mobile message can simplify the development and provide
additional space for optimization.

We introduced a multicast mobile message to the MRTS.
A multicast mobile message is similar to a mobile message
except it can be sent to multiple mobile objects and ensure
that specific mobile objects are loaded into memory when
the message is delivered. Note, this is still experimental and
requires further research and evaluation.

Instead of a destination mobile pointer, a vector of mobile
pointers is supplied. Additionally, a counter specifies which
objects will receive the message. In the example of the
ONUPDR, we would provide a vector containing mobile
pointers of a leaf and its buffer as the first argument and
1 as the second argument, meaning the message should be
delivered only to the leaf mobile object.

Internally, the MRTS must first collect all mobile objects
from the vector on the same node and in-core, and only after
that the mobile message is delivered. The message is then
delivered to one or more mobile objects in the vector (de-
pending on second argument), order is not important, can
be simultaneously.

IV. PERFORMANCEEVALUATION

We conducted our evaluation using resources from (1) Sci-
Clone cluster at the College of William and Mary4 (64
single-cpu Sun Fire V120 servers at 650 MHz with 1 GB

4http://compsci.wm.edu/SciClone
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Figure 7. Execution times for PCDM and OPCDM for in-core problem
sizes

memory and 32 dual-cpu Sun Fire 280R servers at 900 MHz
with 2 GB memory) and STEMS cluster which is part
of Center for Real-time Computing5 (four, four-way SMP
IBM OpenPower 720 compute nodes, with IBM Power5
processors clocked at 1.62 GHz and 8 GB memory).

We start by evaluating the performance of the control layer
of the MRTS. We tested small problems sizes on STEMS
for all three methods and very large problems were tested
on SciClone for in-core methods.

5http://crtc.wm.edu
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Figure 5 shows the execution times of the UPDR (16 and
25 PEs) and the OUPDR (16 PEs). The largest problem size
on the chart, 175 million elements is too large for UPDR
running on 16 processors. We can see that the performance
of the UPDR and the OUPDR is very similar (the OUPDR
is up to 12% slower) for in-core problem sizes which means
that the overhead introduced by the MRTS is small. Figure 6
shows the execution times of the NUPDR and the ONUPDR
for 2, 4, and 8 PEs6. For 4 and 8 PEs the overhead can
be as high as 18% which is acceptable. For 2 PEs case
the ONUPDR is up to 41% slower. This is explained by
the fact that the NUPDR uses custom memory allocator
that shows much lower overhead than the MRTS memory
manager in 2 PEs case. Figure 7 shows the execution times
of the PCDM (16 and 25 PEs) and the OPCDM [2] for 8 and
16 processors. As is the case with the UPDR and OUPDR
the performance of the OPCDM is very similar to that of
the PCDM (up to 13% overhead).

Figures 8, 9 and 10 demonstrate the performance of the
out-of-core and storage layers of the MRTS. They show the
execution times of the OUPDR (8 and 16 PEs), ONUPDR (2,
4 and 8 PEs) and OPCDM (8 and 16 PEs) for very large
problems. These charts demonstrate that the size of very
large problems do not degrade the performance of the

6The NUPDR and current implementation of the ONUPDR are shared
memory applications and as such are restricted to a single node
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Table I
SINGLE PE PERFORMANCE OFUPDRAND OUPDRMETHODS.

Size PEs Time (sec) Speed (×10
3/sec)

×10
6 UPDR OUPDR UPDR OUPDR

24 4 294 46 20 33
59 9 295 102 22 36

109 16 295 176 23 39
175 25 297 368 24 30
255 36 293 576 24 28
353 49 295 802 24 27
471 64 300 1133 25 26
588 81 296 1386 24 27
739 100 300 1745 25 26
874 121 294 2111 25 26

1284 n/a n/a 3122 0 26
1967 n/a n/a 4599 0 27

Table II
SINGLE PEPERFORMANCE OFNUPDRAND ONUPDRMETHODS.

Size, Time (sec) Speed (×10
3/sec)

×10
6 NUPDR ONUPDR NUPDR ONUPDR
8 17 20 119 100
9 21 27 114 89

12 24 33 124 90
16 35 46 115 86
29 n/a 157 n/a 46
46 n/a 322 n/a 36
74 n/a 589 n/a 31

118 n/a 1016 n/a 29
188 n/a 1638 n/a 29
301 n/a 2702 n/a 28

methods (time increases almost linearly) on MRTS.
Tables I, II and III reflect the performance of the out-of-

core layer as well as the performance of the control layer.
We are interested in the performance of a single PE and use
Speed metric which is computed asSpeed = S

T×N
, where

S is the size of the problem (i.e., number of mesh elements),
T is the total execution time andN is the number of PEs.
Note, the execution time of the original application is from
older SciClone cluster since they need the aggregate memory
of over a hundred processors. The MRTS applications run
on the newer faster STEMS cluster and have faster per PE



Table III
SINGLE PE PERFORMANCE OFPCDM AND OPCDMMETHODS.

Size PEs Time (sec) Speed (×10
3/sec)

×10
6 PCDM OPCDM PCDM OPCDM

30 4 308 73 24 26
59 8 296 101 25 37

122 16 319 163 24 47
238 32 310 425 24 35
366 48 327 707 23 32
480 64 304 918 25 33
706 96 324 1408 23 31
963 128 299 1772 25 34

1074 n/a n/a 1986 n/a 34
1235 n/a n/a 2256 n/a 34
1480 n/a n/a 2614 n/a 35
1662 n/a n/a 2900 n/a 36
1864 n/a n/a 3285 n/a 35

Table IV
OVERLAP OF COMPUTATION, COMMUNICATION AND OUT-OF-CORE

DISK IO IN THE OUPDR.

Size Time Comp Comm Disk Overlap (%)
×10

6 (sec) (%) (%) (%) min max avg
24 46 88 18 0 1 7 6
59 102 85 16 0 0 2 1

109 176 86 21 0 2 8 7
175 368 65 15 36 4 19 16
255 576 61 12 51 8 29 24
353 802 58 11 61 6 35 30
471 1133 57 13 64 11 38 33
588 1386 55 13 70 5 46 38
739 1745 54 14 73 5 48 41
874 2111 51 18 73 6 54 42

1284 3122 52 18 76 5 57 46
1967 4599 53 16 82 20 63 50

speed in most cases. Rather than compare the actual speeds
in those tables we want to see the trend as we increase the
problem size. We can see that the original applications as
well as the MRTS implementations seem to maintain more
or less constant speed. This means that as we increase the
problem size the MRTS is able to sustain the performance
level. Additionally, for the original applications this means
they scale rather well [5]–[7], [11].

Tables IV, V and VI are presented to demonstrate the out-
of-core performance of the MRTS applications. These tables
show computation, communication (or synchronization for
ONUPDR) and disk I/O as a percentage of total execution
time. The last three columns show overlap of computa-
tion, communication/synchronization and disk I/O which we
compute asOverlap =

Comp+Comm+Disk−Total

Total
× 100%,

whereComp is the computation time,Comm is the com-
munication/synchronization time,Disk is the disk I/O time
and Total is the total execution time. MRTS is designed
to promote overlapping of communication and I/O and our
data show we have been very successful at it. The overlap
is over 50% for large problems and can be as high as 62%.
This means the MRTS is capable of tolerating high latencies

Table V
OVERLAP OF COMPUTATION, SYNCHRONIZATION AND OUT-OF-CORE

DISK IO IN THE ONUPDR.

Size Time Comp Sync Disk Overlap (%)
×10

6 (sec) avg (%) avg (%) avg (%) min max avg
8 20 98 2 0 0 0 0
9 27 99 1 0 0 0 0

12 33 98 2 0 0 0 0
16 46 98 2 0 0 0 0
29 157 51 1 81 5 38 33
46 322 40 1 103 7 52 43
74 589 36 1 112 7 56 48

118 1016 35 1 116 17 58 52
188 1638 32 1 123 18 64 56
301 2702 33 0 124 17 64 58

Table VI
OVERLAP OF COMPUTATION, COMMUNICATION AND OUT-OF-CORE

DISK IO IN THE OPCDM.

Size Time Comp Comm Disk Overlap (%)
×10

6 (sec) avg (%) avg (%) avg (%) min max avg
30 73 49 53 0 0 2 2
59 101 64 36 0 0 0 0

122 163 94 12 0 2 7 5
238 425 66 7 50 4 27 23
366 707 62 5 64 8 36 30
480 918 60 4 72 6 43 36
706 1408 61 3 76 10 50 40
963 1772 57 3 87 6 56 47

1074 1986 58 3 88 8 63 49
1235 2256 59 3 91 9 65 53
1480 2614 58 3 95 14 67 57
1662 2900 59 4 98 10 73 60
1864 3285 60 4 97 7 74 62

Table VII
THE COMPARISON OF PERFORMANCE OF THE COMPUTING LAYER

IMPLEMENTATIONS.

Size, Threading Building Blocks Grand Central Dispatch
×10

6 T1(sec) T4(sec) Spdup T1(sec) T4(sec) Spdup
7.97 49.20 24.94 1.97 46.29 27.54 1.68
9.49 60.98 31.88 1.91 61.89 34.05 1.82

11.98 70.38 32.93 2.14 71.17 37.84 1.88
16.04 114.59 56.66 2.02 115.31 60.11 1.92

rather well and accommodate data-intensive application.
The MRTS can use and supports either GCD or TBB

multi-threading libraries to utilize shared-memory comput-
ing. Since GCD availability on non-Apple systems is very
limited yet we had to use an older system running an
experimental version of FreeBSD: Dell PowerEdge 6600
with 4 Intel Xeon MP 1.47 GHz processor and 16 GB of
memory.

Table VII shows sequential time (T1), parallel time with
4 PEs (T4) and relative speedup (Spdup) for the ONUPDR
with TBB and GCD implementations of the computing layer.
Size is the number of elements in the resulting mesh, a pipe
cross-section geometry was used for all experiments. The



speedup is comparable to the speedup of the NUPDR, We
can see that GCD implementation is slightly slower yet we
can see similar trends for both implementations.

V. CONCLUSION

We presented the Multi-layered Run-Time System, a
practical parallel out-of-core runtime system designed for
effective utilization of computing resources without sac-
rificing performance. We used traditional CoWs and out-
of-core computing paradigm to perform an evaluation of
our implementation using three parallel unstructured mesh
generation methods with a wide spectrum of memory access
patterns and communication/synchronization requirements
to stress test the MRTS. In particular, the NUPDR was used
to test multi-threaded performance, the UPDR was used to
test structured communication with some synchronization
and the PCDM was used to test fully asynchronous com-
munication. Furthermore, each application tested the out-of-
core subsystem.

The MRTS allows for shared memory, distributed memory
and out-of-core computing to enable effective computing
on a wide range of systems with varying capabilities and
potentially leverage memory and network hierarchies of
emerging supercomputers. It is implemented on top of
established software libraries and standards like TBB/GCD
for multi-threading and ARMCI/MPI for both one- and two-
sided message passing. This permits incremental application
development for multi-layered parallel architectures. More-
over, it allows for an evolutionary approach to applica-
tion migration of complex applications like parallel mesh
generation from traditional parallel platforms to emerging
massively parallel platforms.

The task of porting parallel unstructured mesh generation
codes onto MRTS is relatively straightforward. Generally,
little effort is required to port an application that utilizes
a similar programming model. Extra effort is required to
optimize the application to take full advantage of the func-
tionality provided by the MRTS but it is far less work
than implementing and optimizing an out-of-core application
from scratch.

MRTS provides global address space, data mobility and
active messages parallel programming models. Additionally,
check and restore functionality for fault tolerance can be
implemented with little effort on top of the out-of-core
subsystem which is important for large scale applications.
Moreover, not all applications with access to large super-
computers have enough parallelism to exploit. At the same
time many of those applications require very large memory.
The MRTS can be modified to use the memory of remote
nodes as out-of-core media [33]. This would allow such
applications to utilize large memory without major changes
to the algorithm.

Contribution The runtime system we presented supports
computation of large problems with limited hardware re-

sources as well as effective utilization of those resources.
The runtime system introduces small overhead (up to 18%
on most configurations) and achieves high overlap of com-
munication and disk I/O (up to 62%). As such it does
not sacrifice performance and is capable of tolerating high
communication and I/O latencies. The API and and the
programming model of the runtime system make the task of
transforming an in-core application into an out-of-core one
much simpler than developing it from scratch. Design and
implementation of ONUPDR which is based on state of the
art in-core NUPDR is an example of such transformation.
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