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Summary. The application we target in this paper is the registration of pre-
operative Magnetic Resonance Imaging with the data acquired intra-operatively
during image-guided neurosurgery. The objective of this application is improved
tracking of tumor boundaries and surrounding brain structures during open skull
tumor resection. We focus on a validated, physics-based non-rigid registration ap-
proach, which has been used in clinical studies for the last three years. This approach
requires tetrahedral tessellation of the brain volume for biomechanical model con-
struction. The analysis of the requirements and available methods to construct such
a discretization is the objective of our paper.

The paper presents a number of practical contributions. First, we survey the
proposed approaches to tetrahedral mesh generation from medical image data. Sec-
ond, we analyze the application-specific requirements to mesh generation. Third,
we describe an end-to-end procedure of tetrahedral meshing for this application us-
ing off-the-shelf non-commercial software. Finally, we compare the performance of
the considered mesh generation tools in the application context using generic and
application-specific quantitative measures.

1 Introduction

Mesh generation for medical imaging applications has been attracting a lot of
attention in the mesh generation community. Finite Element Method (FEM)
is essential in modeling tissue deformation for these applications, therefore
necessitating research and development of new mesh generation methods and
tools. The existing imaging modalities, such as Magnetic Resonance Imaging
(MRI), provide only limited knowledge about the internal organs. The lack
of precise geometric models and the need to construct volume tessellations
from the image data is a very practical limitation, which complicates the
use of existing off-the-shelf meshing tools. Application-specific requirements
make the problem even more challenging. In practice, there is no single widely
accepted method to address the mesh generation needs of all applications.
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In this paper we focus on tetrahedral mesh generation for physics-based
Non-Rigid Registration (NRR) of brain MRI during Image-Guided Neuro-
surgery (IGNS). Specifically, we focus on the NRR approach developed by
Clatz et al. [1], and subsequently validated in the clinical setting by Archip
et al. [2]. The method has been studied at Brigham and Women’s Hospital
(Harvard Medical School, Boston) for the last three years.

The main goal in neurosurgery is maximum removal of the tumor tissue
with the minimum damage to the healthy brain structures. It is very difficult
to identify boundaries of certain tumors, e.g., gliomas, with the naked eye.
Instead, pre-operative imaging is typically used to precisely locate the tumor,
and the neighboring life-critical structures. Brain shift is often unavoidable
during the tumor resection, making the pre-operative images invalid. Intra-
operative images acquired periodically during the tumor resection have lower
quality, and usually cannot substitute the pre-operative data. NRR is used to
align the pre-operative MRI with the intra-operative scans. The specific NRR
method we study uses a patient-specific bio-mechanical model to facilitate
the brain shift estimation. Tetrahedral tessellation of the brain volume (more
specifically, skull Intra-Cranial Cavity (ICC)) is essential for this application.

Our paper is the continuation of an earlier study [3]. We consider the
complete process of mesh generation from the segmented image, and dis-
cuss specific application requirements derived from the established registration
method. Our contributions are the summary of the state of the art methods
for constructing tetrahedral meshes from images, and a practical evaluation of
the existing off-the-shelf meshing tools. Our evaluation is based on the number
of qualitative and quantitative metrics, which allow to compare the studied
methods in the context of the FEM computations that facilitate IGNS.

2 Physics-based Non-Rigid Registration of Brain MRI

2.1 Formulation

The objective of image registration is to determine the transformation that
aligns features in one (floating) image with the features in another (target)
image. Image registration is a fundamental problem in medical image process-
ing. The reader is referred to the survey by Hill et al. [4] for a thorough review
on this topic. Non-rigid image registration is used when the imaged structure
is subject to a non-affine transformation. Image registration methods are usu-
ally tailored to a specific clinical application. The specific clinical application
we target is IGNS facilitated by the specific physics-based NRR approach [1].

The NRR method in [1] consists of the following steps. First, a sparse set of
mathematical landmarks, which we call registration points, is identified within
the pre-operative image of the brain volume. Once the intra-operative image
is available, the time-critical part of the computation is initiated. The defor-
mation is estimated at each registration point using block matching between
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the pre- and intra-operative images (in the context of registration, these are
the floating and target images, respectively). Block matching results inher-
ently contain incorrect matches (outliers). Because of outliers, the deforma-
tion field cannot be derived by interpolating displacements at the registration
points. Mechanical energy of the deforming mesh is used to regularize the
displacements, i.e., smooth the impact of outliers on the solution:

W = (HU−D)T S(HU−D) + UT KU.

Here U is the vector of displacements at the mesh nodes, K is the stiffness ma-
trix [5], H is the interpolation matrix from the tetrahedra vertices to the regis-
tration points inside a tetrahedron, D is the vector of displacements recovered
at the registration points, and S is the block-diagonal positive semi-definite
matrix which captures confidence in the corresponding entry of D [1].

The outliers are found by iteratively comparing the displacements at the
registration points with those interpolated from the mesh vertices, and dis-
carding the matches with the largest error magnitude. The displacements at
the mesh vertices are estimated using the following formulation:

F0 = 0, Ui = [HT SiH + K]−1[HT SiD + Fi−1], Fi = KUi. (1)

At each iteration, the registration points are ordered by the absolute value
of the error ‖Di − HUi‖ weighted by the 3 × 3 image structure tensor Ti

at the registration point. The weight is used because block matching can
only recover displacements in the directions orthogonal to the edges in the
image [1]. Outlier registration points are selected as a pre-defined, e.g., 5%,
number of registration points with the largest error magnitude.

2.2 Finite element mesh generation

Tetrahedral mesh has a dual role in the formulation. First, it is used to find
the stiffness matrix in the mechanical energy component. Second, it allows to
regularize, or smooth, the displacements recovered by block matching locally
within the mesh vertex neighborhood. The displacement recovered at each
of the registration points within the mesh vertex cell complex affects the
displacement at the corresponding mesh vertex. Therefore, it is important to
maintain the empirically obtained ratio between the number of mesh vertices
and the number of registration points under 0.1 (at least 10 registration points
per mesh vertex) [1]. Ideally, this ratio should be maintained within each mesh
vertex cell complex. We define the cell complex as a set of mesh tetrahedra
incident on a mesh k-cell, e.g., mesh vertex is a 0-cell, and mesh edge 1-cell.
The matrix HT SH has a non-zero 3× 3 entry for each mesh vertex and edge
with the cell complexes containing registration points. The corresponding sub-
matrices can be expressed as the sum over the registration points in a cell. For
example, the diagonal 3× 3 sub-matrix that corresponds to the mesh vertex
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vi can be calculated as the following summation over the registration points
in the cell complex S of vi:

[HT SH]i =
∑

∀T ∈S(vi)

∑
∀k∈T

hTvi
(k)2

tr(K)
np

c(k)T(k). (2)

Here, hTvi
(k) is the barycentric coordinate of the kth registration point with

respect to vi in the containing tetrahedron T , n is the number of mesh vertices,
p is the number of the registration points, c(k) is the correlation coefficient
from block matching, and T(k) is the image structure tensor at k.

The result of non-rigid registration is a deformation field, which defines
deformation vector at each point in the image. That vector is computed by
interpolating the displacements at the mesh vertices after the last iteration [5]:

∀x ∈ T : u(x) =
3∑

j=0

hTvj
(x)u(vi). (3)

Note that the iterative procedure in Equation 1 requires solving the lin-
ear system of equations at each iteration within the time-critical part of the
computation. The size of this system depends on the number of degrees of
freedom in the mesh model. Therefore, it is important to minimize the size of
the mesh as much as possible without sacrificing the accuracy of the solution.

2.3 Application-specific requirements to mesh generation

Based on the registration formulation, we can derive the following application-
specific requirements to mesh generation:

R1 Equi-distribution of the registration points w.r.t. mesh vertex cells: small
number of registration points (e.g., less than 10, but greater than 0) within
the vertex cell complex makes the formulation more sensitive to outliers
and introduces additional displacement error [1].

R2 Minimization of the approximation error at registration points: error of
the displacements recovered at registration points can be reduced locally
by using smaller mesh elements [6].

R3 Prevention of tetrahedron inversion during mesh deformation: while the
interpolation error shown in Equation 3 does not depend on the tetra-
hedron shape, inversion or collapse of a tetrahedron will result in an un-
realistic deformation field, e.g., points inside the different tetrahedra can
map to the same image location. We can attempt to remedy this prob-
lem by adjusting theatetrahedra size locally according to the expected
deformation.

Adaptive refinement of the mesh following the simulation, if necessary, is
outside the scope of this paper.
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3 Image-to-Mesh Conversion

3.1 Formulation and generic requirements to mesh generation

Following the notation of Hill et al. [4], we define the image domain Ω as
the overlap between the bounded continuous set Ω̃ (image field of view) and
the infinite discrete sampling grid Γς , characterized by the anisotropic sample
spacing ς = (ςx, ςy, ςz), Ω = Ω̃ ∩ Γς . 3D image is usually acquired as a
sequence of slice scans, where sampling spacing is square in the slice plane,
with thicker dimension along the direction of slice acquisition. Voxel is an
orthogonal parallelepiped-shaped region of the image field of view centered
at the sampling grid point. Its dimensions are defined by the grid spacing ς.
For the considered application, image A is a mapping of points in the image
domain R3 to R, A : x ∈ Ω 7→ A(x). In this paper we are mostly concerned
with the medical applications that provide a segmentation of the object of
interest. The output of segmentation is a binary image, i.e., A(x) ∈ {0, 1},
with the subset {x ∈ Ω|A(x) = 1} corresponding to the voxels located inside
the object. Let Σ be the surface that separates zero and non-zero voxels of this
binary image. The surface Σ is defined implicitly, as we only know whether a
given voxel is inside or outside the object.

The objective of mesh generation for FEM computations from the binary
image data is to construct a conforming tetrahedral meshM = (V, T ), which
satisfies the following generic requirements:

R4 The mesh boundary (triangulation) should be close to Σ.
R5 Mesh size should be minimized to reduce the computational costs.
R6 Mesh elements should not have small angles [6].

These generic requirements have been in the focus of mesh generation
community for decades. The application-specific requirements are usually ad-
dressed by constructing a customized mesh sizing function, or developing cus-
tomized mesh generation methods. In this paper we explore the first approach.
Therefore, the ability to accept a user-defined sizing function is an essential
feature for a mesh generation method to be considered for our application.

3.2 Related work

An intrinsic difficulty of generating meshes from the binary image data is the
processing and recovery of the object geometry. General-purpose mesh gener-
ators (for solid and geometric modeling applications) expect that the object
boundary is parametrized, i.e., it is defined by means of constructive solid
geometry primitives, or explicitly (e.g., through the boundary discretization,
as a collection of patches). Therefore, in order to convert the binary image
into a tetrahedral mesh, one can either (1) recover the parametrized object
surface followed by a conventional mesh generation technique, or (2) use a
mesh generation method, which operates directly on the binary image. The
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Fig. 1. A hierarchy of the studied approaches to mesh generation.

reader is referred to the survey by Owen [7] for a discussion of the classical ap-
proaches to volume meshing. Next, we overview some of the methods designed
to construct tetrahedral discretizations directly from the image data.

A step which precedes geometry processing is segmentation of the struc-
ture of interest from the multivalued image. Segmentation is a fundamental
problem in medical image processing [8], and is outside the scope of this paper.
We assume that the segmentated ICC is provided by the application.

The objective of the surface recovery step is to construct an explicit rep-
resentation of Σ. The methods which recover piecewise-linear surface approx-
imation and provide surface triangulation are most practical, as this is the
input most mesh generation methods expect. It is desired for the triangulated
surface (1) to have the same topology as Σ, (2) to be sufficiently close to Σ,
and (3) to have guaranteed quality of the triangles in the surface discretiza-
tion, as defined by the triangle aspect ratio, while (4) minimizing the number
of triangles. The first two requirements are important for the accurate repre-
sentation of the object, while the other two are essential in order to satisfy
the generic requirements to volume mesh generation.

A straightforward approach to recover iso-surface is by means of the
Marching Cubes (MC) algorithm [9]. However, the original version of this
algorithm may produce a triangulation with topological problems. Another
practical problem is the inability of the MC algorithm to generate adaptive
surface triangulations. The surface produced by MC has “jagged” artifacts
because of voxel sampling, which may create subsequent problems with the
simulation [10]. Surface mesh simplification, or remeshing, is often a necessary
post-processing step when MC is used [11, 12].

Parametrized surface representation can be recovered by more advanced
techniques, which provide theoretical guarantees about the recovered surface.
Since the seminal work of Amenta and Bern [13], a number of algorithms
have been proposed [14, 15, 16]. These methods differ in their performance,
robustness to noise and theoretical guarantees.

A number of approaches to volume mesh construction were proposed, that
are capable to operate on image date directly. We separate such methods into
the following two categories.

The methods from the first category do not require segmentation and
create meshes from the multi-value image data [17, 18]. The assumption is
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usually made that the pixels which correspond to the same tissue have similar
intensity, and the object boundary can be defined by some isosurface value.
Therefore, these methods attempt to minimize the error of approximating this
isosurface, while maintaining good quality of the mesh tetrahedra. Such ap-
proach to mesh generation is very practical for volume rendering and certain
FEM applications. However, brain segmentation is one of the very challeng-
ing problems in image segmentation, which cannot be solved by thresholding
only [19, 8]. Direct isosurface-based meshing of the brain volume from the
multivalued image may lead to large errors in the surface recovery.

The second category of the image-based mesh generation methods operate
on binary images, produced by specialized image segmentation algorithms.
Among the methods in this category we separate four groups.

The methods in the first group attempt to recover the surface of the object
at the level of voxel resolution [20, 21, 22]. Therefore, we call those techniques
voxel-based meshing . The sizes of surface triangles in the meshes constructed
using this approach are comparable with the size of voxels, i.e., the surface
triangulation is not adaptive. The use of such techniques is problematic for
our application, because the control over the element size is limited due to
the fixed high resolution of the surface discretization.

A large number of methods that are based on space-tree decompositions
have been proposed recently for meshing binary images. Conceptually, this
approach has a long history in classical mesh generation. Yerry and Shep-
hard [23] were some of the first to present an octree-based approach to 3-d
mesh generation. Mitchell and Vavasis [24] describe a quadtree-based algo-
rithm with theoretical bounds on the mesh size. These ideas have been adopted
to construct tetrahedral meshes from binary images [25, 26, 27]. Such methods
recover the surface by finding the points of intersection of the adaptive space-
tree with the surface of the object defined as a binary image. Mesh quality
near the surface can be compromised, as the newly inserted mesh nodes can
be arbitrarily close to the existing nodes. Mesh optimization [28] is commonly
used as a post-processing step. In practice, the methods from this group are
well-suited for meshing binary images, and were shown to be quite effective
for a number of medical applications. Some of these methods were designed
and evaluated on the segmented brain MRI data [25, 26, 27], which is the
geometry used in our application. However, the control over the customized
element sizing is usually very limited, and has not been evaluated previously.

The methods based on surface matching use a template volume mesh,
which is warped to match the surface of the modeled object [29]. While the
advantages of this approach are good surface fidelity, control over the mesh
size and high speed, the quality of the elements undergoing deformation during
warping can be compromised. Mesh optimization is a commonly used post-
processing step for the methods in this group. This concept is most suitable
for meshing objects that have very similar geometries. The geometry of ICC
is quite similar between different subjects. However, the mesh element sizing
depends on criteria R1-3, which are case-specific. Therefore, it is not feasible to
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construct a single template mesh for our application to satisfy case-dependent
distributions.

Representation of the object as a binary image conveniently lends itself to
the construction of an implicit function describing the object surface. Implicit
function is a mapping φ : R3 7→ R, and the object surface is defined as the
kth level set of this function, φ(x) = k. An approximation of the implicit
function representing the object surface can be easily obtained by computing
the distance transform on the binary image [27], and using the zero level set
as a surface definition. A number of volume mesh generation methods have
been introduced recently to mesh implicitly defined surfaces [30, 31].

Overall, we observe that a great variety of methods for tetrahedral meshing
of binary images have been developed. Most of these methods were proposed
and evaluated in the context of their fitness to a specific application. Little
or no attention is usually paid to the comparison of the newly proposed tech-
niques with the existing methods, and few implementations are available to
conduct such an evaluation by external groups. Also, most of the effort is
usually directed to developing a method that delivers good practical results,
and not on establishing theoretical guarantees about the produced meshes.
The lack of such guarantees makes it even more difficult to select the most
appropriate algorithm from the range of seemingly similar methods.

With the specific application we target, our goal is first to derive the pre-
cise requirements to mesh generation. These requirements can then be used to
customize and evaluate readily available, established methods to address the
problem of mesh generation for the NRR application. The results of such eval-
uation can be used next to identify problems within the existing approaches
and justify the development of new mesh generation methods for this appli-
cation. However, before such necessity is justified, we believe the possibility
of using existing off-the-shelf tools must be carefully examined.

4 Methodology

4.1 Mesh generation tools

We evaluate three conceptually different approaches to constructing tetrahe-
dral meshes from binary images. Common to all these methods is their ability
to adjust the mesh element size locally according to the value of sizing func-
tion, or local refinement rules.

Tetgen is an implementation of the Delaunay mesh generation and re-
finement algorithm by Si [32]. This method is accompanied by the proof of
termination and bounds on the circumradius-to-shortest edge ratio. The im-
plementation has a number of very practical features: it accepts user-defined
sizing function, the exterior boundaries are refined simultaneously with the
volume and “... are never over-refined” [32]. The size of the mesh can be
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controlled by the alpha parameters, which are not part of the basic Delau-
nay refinement [32]. We used Tetgen version 1.4.2. The implementation works
with the input surface defined as a piecewise linear complex (PLC).

NETGEN is an advancing front mesh generator developed by Shöberl [33].
We used version 4.5rc2 of the code. The implementation can be used to con-
struct both surface triangulations of the parametrized surfaces, and adap-
tive volume tetrahedralizations. It gives the user some control over the mesh
grading, its implementation is accompanied by a GUI environment, and the
acceptable inputs include triangulated surface of the domain.

RGM is a space-tree based mesher we presented earlier [27] that works
directly on binary image data. Our implementation is based on the algorithm
of Molino et al. [30], which builds a mesh from the implicit definition of the
domain. RGM is designed to work directly with the binary image, and we
use the Mesquite [34] mesh optimization library to improve the mesh quality
following the surface recovery. We used slightly modified version compared to
the code available online. Specifically, we use Mesquite instead of GRUMMP
for mesh optimization, and implement a custom subdivision rule, as described
in the next section.

Both Tetgen and NETGEN require parametrized surface representation.
We use implicit surface meshing method by Boissonnat and Oudot [16] im-
plemented in the Surface mesh generation package of CGAL [35]. The im-
plementation generates adaptive triangular surface directly from the binary
image. The guarantees of approximation accuracy and surface quality are pro-
vided. All the interaction with the image data is done via the Insight Toolkit
(ITK) [36]1.

4.2 Adaptive mesh generation

A sizing function H(p) > 0 specifies the desired length of edges at point
p [32]. It can be defined analytically, or, more often, its values are prescribed
at the vertices of a background mesh. The value of sizing at the non-vertex
locations can then be derived by interpolation. Both Tetgen and NETGEN
accept background mesh to control local mesh size. We use the sizing function
defined at the vertices of a background mesh to address the application-specific
requirements to mesh generation.

We use the same CGAL-recovered surface mesh for both background mesh
and the mesh used in FEM calculations. The background mesh is built us-
ing Tetgen, with the small uniform bound on the tetrahedron volume. The
sizing value at each mesh vertex was initialized with the distance to the kth

1Off-the-shelf software tools we used (links valid as of July 15, 2008):
Tetgen: http://tetgen.berlios.de/, NETGEN : http://www.hpfem.jku.

at/netgen/, RGM : http://www.na-mic.org/svn/NAMICSandBox/trunk/

TetrahedralMeshGeneration/, CGAL: http://cgal.org/, ITK: http://itk.org/,
VTK: http://vtk.org/, Paraview: http://paraview.org.
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registration point closest to it, to reflect the density of the registration point
distribution. The idea here is that the shape of a perfect mesh vertex cell
complex is close to a ball with the radius prescribed by the background mesh.
We use CGAL [35] k-neighbor search to find the k closest registration points
and the distance to the furthest point for each background mesh vertex. The
process of background mesh initialization is parametrized by the number of
closest registration points k. Our goal was to have around 30 registration
points in the cell complex of each vertex. However, based on the experimen-
tal results, the mean value in distribution of the registration points both for
Tetgen and NETGEN was not approaching the desired bound when we set
k = 30. Experimentally, we arrived at a result that the best distribution is ob-
tained by using larger values for k (we used k = 100), and adjusting the Tetgen
mesh by reducing the alpha parameters of the implementation, see [32]. The
NETGEN mesh was constructed using the same background mesh, but the
sizing values were scaled down by constant to have similar number of nodes
compared to the adaptive Tetgen mesh.

The sizing of the adaptive mesh constructed with RGM was controlled by
a custom subdivision function. This function is called for each tetrahedron
during the refinement at each mesh resolution, and returns true if the tetra-
hedron requires subdivision. We calculate the number of registration points
inside the cells of the four tetrahedron vertices. The tetrahedron is refined if
the number of the registration points in each vertex cell exceeds parameter n.
We used two subdivision resolutions in all cases. The process of adaptive mesh
construction with RGM is parametrized by the value of constant n, and the
spacing of the initial lattice, see [27]. These parameters were experimentally
chosen so that the size of the adaptive mesh (the number of mesh vertices) is
approximately the same as the size of the adaptive Tetgen mesh.

4.3 Evaluation

We compare two sets of meshes constructed with each of the evaluated meth-
ods, i.e., with and without using custom mesh sizing. The meshes are used
to register real MRI subject to synthetic deformations. We use synthetically
deformed images, because the true deformation field (the ground truth de-
formation) cannot be recovered in the real IGNS cases, and the registration
accuracy cannot be evaluated at an arbitrary image location. The ability to
assess the registration error is essential for our evaluation. We provide the
details on the generation of the synthetic deformation field in [37].

We try to create meshes with the similar number of vertices within each
group (uniform and adaptive), and compare them using a set of quantitative
metrics. There are two groups of metrics we use. The first group includes
the mesh properties, which can be directly optimized during the process of
mesh construction. These include element shape and surface approximation
accuracy. We assess the element shape by the minimum dihedral angle for
each tetrahedron of the mesh. Surface approximation accuracy is evaluated
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Fig. 2. Left to right: selected registration points, and adaptive tetrahedral mesh cuts
(same slice) generated with Tetgen, NETGEN , and RGM . Tetrahedra are colored
according to their volume, from blue (smallest) to red (largest).

as the percentage of the registration points covered by the mesh, which is a
practical measure for the NRR application.

The second group includes quantitative metrics, which cannot be directly
optimized by the existing mesh generation methods. Let D̄i be the ground
truth displacement at the registration point i, which aligns given point in the
floating image with the corresponding point in the target image. This value
is known to us, because the true deformation field is synthetic. We define the
following application-specific quantitative metrics:

1. Approximation error at a registration point is defined as ‖Di−HUi‖. We
assess the accuracy of approximation by the percentage of the registration
points, where the magnitude of this error exceeds 1.0. We call those reg-
istration points “error points”, while reporting results (errors below this
threshold are in the sub-voxel range).

2. Outlier detection sensitivity , defined as the ratio of the true outliers within
the discarded registration points to the total number of the discarded
registration points. The true outlier is defined as a registration point,
where ‖TiDi − D̄i‖ > 1.0.

3. RMS of the absolute error at the registration points, absolute error being
defined as ‖HUi − D̄i‖.

4. Distribution of the registration points with respect to mesh vertices.

Note that the goal of the study was not to tune the NRR parameters to get
the optimal registration results. We attempt to perform a controlled study of
the impact of mesh generation on the NRR performance, while keeping fixed
the other parameters that can influence registration accuracy.

5 Results

We constructed synthetic deformation fields and performed NRR on the MRI
scans 1 through 3 in the set of 18 images available from the Internet Brain
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Table 1. Registration points, true outliers, and their coverage by the mesh surfaces.

case id reg. points outliers,% reg. points inside,% outliers inside,%
CGAL RGM CGAL RGM

IBSR01 56447 7.8% 95.6% 91.1% 6.9% 5.5%
IBSR02 57526 16.2% 94.9% 90.8% 14.3% 12.4%
IBSR03 46525 18.8% 95.3% 90.5% 16.0% 13.1%

Table 2. Min/average/max of registration points per mesh vertex cell complex.

case id uniform-graded meshes adaptive meshes
Tetgen NETGEN RGM Tetgen NETGEN RGM

IBSR01 0/135/460 0/137/715 0/130/390 0/36/111 0/36/432 0/33/277
IBSR02 0/131/479 0/136/667 0/124/374 0/35/118 0/35/444 0/30/168
IBSR03 0/127/408 0/126/611 0/121/345 0/27/87 0/27/320 0/28/254

Segmentation Repository (IBSR)2. The synthetic deformations were gener-
ated with 20 “knots” in the deformation grid on average [37]. The deforma-
tion magnitude at each “knot” was under 5% of the brain size to maintain
the validity of the linear elastic physical model [5, 1].

The parameters used for CGAL surface mesh generation [35] were: an-
gular bound 30◦, surface radius and distance bounds 10.0, surface precision
bound 0.001. Each method was used to construct two meshes for each regis-
tration case. The prescribed element size was uniform throughout the volume
of the first mesh. The second mesh was constructed to adapt the element
size according to the sizing function designed in Section 4.2. We adjusted the
implementation-specific parameters to have the uniform and adaptive meshes
with approximately 1.5k and 6k vertices, respectively.

Figure 2 shows cross-sections of the adaptive meshes. The adaptive meshes
generated with NETGEN have a layer of relatively large elements near the
surface of the mesh. This is explained by the nature of the Advancing Front
algorithm, which does not insert new points on the triangulated surface. We
explored the option to use the CGAL triangulation as the support surface,
and instructed NETGEN to construct a new triangulation to respect the pre-
scribed element sizing. However, the re-triangulated surfaces contained small
triangles, which did not obey the prescribed edge sizing.

None of the meshes contained sliver elements. We observed, that the mini-
mum dihedral angle was the largest, 14◦, in the NETGEN -generated meshes.
The values of this metric for Tetgen and RGM were 8◦ and 5◦ respectively.

The synthetic registration cases differ in the number of registration points,
and in the number of true outliers. Moreover, because of the differences in

2The MR brain data sets were provided by the Center for Morphometric Anal-
ysis at Massachusetts General Hospital and are available at http://www.cma.mgh.

harvard.edu/ibsr/.
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mesh surfaces recovered by CGAL and RGM respectively, different percentage
of those points are located inside the mesh domain, as summarized in Table 1.
This is an important observation, because the percentage of outliers impacts
the registration error, which is also used in the evaluation. Also, due to the
lower precision of surface approximation by RGM , about 4% fewer registration
points and 1% to 3% fewer outliers are located within the RGM -generated
meshes. The distribution of outliers is non-uniform, and many of them are
located close to the surface.

Based on the results presented in Table 2 and Figure 3, the use of custom
mesh sizing can significantly improve the distribution of registration points
compared to uniform-sized meshes. In conjunction with the sizing function,
Tetgen achieves the best distribution results overall. Although the average val-
ues for the distributions are similar for all meshes, Tetgen meshes have lower
maximum values and better distribution: the distribution curve approaches
normal distribution with the mean close to the desired number (k = 30). The
advantage of Tetgen over NETGEN is that mesh points can be inserted at ar-
bitrary locations on the surface during refinement. RGM is limited even more
than NETGEN , as new points can be inserted only at the periodic predefined
locations, based on the initial lattice structure. Nevertheless, the distributions
in RGM meshes are consistently better compared with NETGEN . This might
be caused by large elements near the surface of the NETGEN meshes.

Note that empty vertex cells do not pose a problem. The corresponding
mesh nodes will move following the neighboring vertices during registration.
Problems can be caused by few registration points (the contribution of outliers
is not smoothed by the correctly recovered displacements), or by very large
number of registration points in the cell (increased approximation error).

The non-rigid registration was performed with the default parameters sug-
gested by Clatz et al. [1]. The quantitative metrics that are not directly op-
timized by mesh generation are summarized in Table 3. The approximation
accuracy is consistently improved for all mesh generation methods when the
refined meshes are used. However, this is the only metric that is clearly con-
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Fig. 3. Distribution of the number of registration points per mesh vertex: uniform-
graded meshes (left) and adaptive refined meshes (right); IBSR01.
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Fig. 4. Left: Image voxels with the largest values of the error with respect to ground
truth. Center: mesh elements with the minimum eigenvalue of the dilation matrix
below 0.1. Right: inverted mesh elements after NRR. IBSR02, Tetgen adaptive mesh,
wireframe shows the undeformed mesh.

Table 3. Application-specific metrics for the evaluated meshes.

case id metric uniform size meshes adaptive meshes
Tetgen NETGEN RGM Tetgen NETGEN RGM

IBSR01 mesh points 1617 1596 1607 6044 6020 6209
error points 2.4% 2.6% 1.9% 1.6% 1.8% 1.1%
sensitivity 53.5% 52.6% 43.8% 52.3% 52.5% 42.8%
RMS error 1.60 1.62 1.61 1.69 1.65 1.60

IBSR02 mesh points 1682 1617 1696 6166 6255 6993
error points 6.7% 7.1% 5.9% 4.9% 5.8% 4.3%
sensitivity 64.7% 64.4% 59.4% 63% 64.7% 60.5%
RMS error 1.98 1.92 1.82 2.55 2.27 2.23

IBSR03 mesh points 1410 1413 1404 6631 6503 6033
error points 7.7% 8.1% 6.3% 4.8% 6.4% 4.5%
sensitivity 72.9% 71.2% 65.7% 70.7% 74.6% 69.3%
RMS error 2.61 2.53 2.25 3.52 3.08 3.05

nected with the size of the elements of the mesh. We do not observe improve-
ment in either outlier detection sensitivity or RMS of the registration error.
On the contrary, RMS error is increasing in the refined meshes. We suggest
that there are two major reasons why this may be the case.

First, the adaptively refined meshes are more susceptible to the element
inversion during NRR. The areas of the high error in the deformation field
recovered by NRR are spatially co-located with the areas of the mesh, where
tetrahedra invert or become highly skewed. We use the tetrahedron measure
proposed by Baker [38] and identify highly skewed mesh elements by the
minimum eigenvalue of the element dilation matrix. Figure 4 shows spatial
correlation of the locations of skewed and inverted elements with the areas of
image with the largest registration error.

Second, refined meshes decrease the error of approximating displacements
recovered by block matching both at the outlier and non-outlier registration
points. Ideally, the mesh should be constructed in such a way that in each
mesh vertex cell the number of outliers is less than the number of correct dis-
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placements. In general outliers are distributed non-uniformly. As we decrease
the size of the mesh elements, it becomes more likely that the registration
points inside some cells will be dominated by the outliers, causing higher
error with respect to the true deformation.

We tried to resolve the first problem by modifying the sizing function to
reflect the deformation magnitude averaged over the k closest registration
points. The parameters for CGAL surface mesh recovery were chosen accord-
ing to the maximum of the averaged deformation magnitude near the object
surface. None of the evaluated meshers was able to follow the prescribed sizing
distribution closely. Both Tetgen and NETGEN created large tetrahedra near
the mesh surface. We cannot attempt to improve the fitness of the mesh to
the sizing function by reducing the default values of the alpha parameters, as
we have done for the meshes evaluated previously. The alpha parameters con-
trol the bound on the shortest edge length at a mesh point, see Lemma 1 by
Si [32]. Their reduction introduces small volume elements. The construction
of meshes that adapt to the degree of deformation requires further study.

6 Discussion

In this section we summarize our quantitative and qualitative analysis for each
of the six major requirements identified for the NRR application.

R1: Equi-distribution of the registration points. We were not able to achieve
equi-distribution, which may be an NP-hard problem. However, in all cases,
the use of custom sizing function significantly improved that distribution. The
mean values for the number of registration points were close for all meshes.
In all test cases, meshes constructed with Tetgen had lower values of the
maximum number of registration points and better distribution overall.

R2: Reduction of the approximation error at registration points. In the
general case, approximation error can be reduced by refining the mesh. This
is observed in Table 3 when comparing uniform and adaptive meshes. Further
refinement is problematic, as it would violate the requirement R1. When com-
paring the meshes with respect to the number of error points, we observe that
this number is consistently lower for Tetgen vs. NETGEN . Because Tetgen
better follows the values of sizing, it creates smaller elements in the areas with
high registration point density. Therefore, the approximation error will also
be reduced for the points in those areas. RGM has consistently the lowest
number of error points. This can be explained, because there are fewer regis-
tration points located inside the mesh, while the mesh sizes are comparable
with the Tetgen and NETGEN counterpart meshes.

R3: Prevention of tetrahedra inversion. Tetrahedra inversion can be pre-
vented by increasing the size of the mesh elements. This goes contrary to
what is required by the requirements R1 and R2. Moreover, it is not clear
what should be the optimum element size to avoid inversion. The balancing
of this requirements with R1 and R2 is the subject of future work.
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R4: Object surface approximation accuracy. CGAL implicit surface recov-
ery procedure was used to construct surface triangulations for Tetgen and
NETGEN . This allows to control over both the surface approximation accu-
racy and the angles in surface triangulation. The distribution of registration
points is highly non-uniform, and is more dense in the areas of the prominent
features of the brain, cortex being one of those areas. Poor surface approxi-
mation accuracy discards registration points located in the cortex area.

R5: Mesh size optimality. The number of vertices in the meshes we con-
structed were adjusted using the custom parameters for mesh generation in
each particular case. However, given the similar number of mesh vertices, the
evaluated meshes perform differently with respect to the quantitative metrics
we compared. An important practical concern is the ability to control the
total size of the mesh. Based on our experience, Tetgen is the most flexible
in this respect. In order to control the size of the mesh with NETGEN , the
sizing values at the background mesh vertices should be scaled. Moreover,
the size of the elements near the surface is very hard to control. The size of
the RGM mesh can be changed by varying the size of the initial lattice, and
by parametrizing the refinement rules, which is not straightforward in prac-
tice (e.g., changing the number of the maximum registration points for the
tetrahedron vertex cells, which can only be done in integer increments).

R6: Control over minimum dihedral angle. Based on our experimental
data, the meshes produced by all three methods are very similar when judged
by the distribution of minimum dihedral angle. NETGEN produces meshes
with the relatively largest values of the minimum dihedral angle. However,
all of the compared meshes had minimum angle larger than 5◦, which is an
acceptable value for the stiffness matrix calculations.

In summary, we were able to address all of the application-specific require-
ments except R3 using the off-the-shelf mesh generation tools. Custom sizing
function was essential to meet requirements R1 and R2. Among the evaluated
meshing tools, the Delaunay-based approach provides best theoretical guar-
antees, best practical results, and is the most flexible in the mesh size control.
At the same time, the RMS error values, which are the metrics of the most
practical relevance, are very similar for all the evaluated methods.

The open questions related to this study are the following: (1) construc-
tion of the sizing function, which balances the conflicting requirements, and
gives the ability to assign weights according to their importance; (2) improved
fitness of the generated meshes to the desired mesh sizing, and studying the
guarantees of such fitness; (3) further evaluation of the impact of the mesh on
the error of registration with respect to the ground truth.
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