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Abstract

Objective:

Endoscopic skull base or cranial procedures can cause brain shift. Currently useful intra-operative soft tissue
information is obtained via intraoperative MRI (iMRI). Intraoperative CT (iCT) has been introduced but soft
tissue information is limited. Therefore our objective is to determine if non-rigid registration (NRR) between
iCT images and pMRI images is possible for intraoperative soft tissue movement.

Methods:

Patients with skull base pathology with compression of soft tissue were recruited. pCT and pMRI images
were obtained. Segmentation of the radiographic images was performed to create a tetrahedral volume
mesh. Anatomic features were identified for “block matching”. iCT images were acquired and rigid
registration (RR) for iCT to pCT and pMRI were performed. Block matching between the iCT and the pCT was
executed solving for the dense deformation field. NRR was achieved with the pMRI according to the dense
deformation field. Matching and registration error were calculated and compared between RR and NRR.
Results:

Six patients were identified for the study. Segmentation, mesh generation, point selection, block matching,
and dense deformation field estimation was successfully performed. The NRR accuracy improved on an
average of 4.14 times compared to RR. The registration accuracy for acquired deformation improved by 19%
for NRR over that of RR.

Conclusion:

This is the first study evaluating the NRR of iCT with pMRI. NRR is possible between the pCT and iMRI.
Successful application of this technique would allow iCT to become a pseudo-iMRI at a fraction of the cost,

however clinical application has not been determined.
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1. Introduction

Pre operative soft tissue, such as the brain, deformations can occur during a procedure and result in
misalignment between preoperatively acquired datasets and the intra-operative acquired images. Intra-
operative acquisition of fMRI (functional) and Diffusion Tensor Imaging (DTI) with intra-operative MRI is
impractical today due to long image acquisition and processing times. Existing commercial systems use rigid
registration algorithms to map pre-operatively acquired data like CT or MRI images into the navigational
system. Recently pre-operative images have also been merged with intra-operative CT (iCT). However, the
rigid algorithms between preoperative MRI and iCT do not provide sufficient accuracy when the brain
deformation is greater than 10-15% of the adult brain size and therefore can not account for changes in brain
shift[1]. Therefore, the study of real-time non-rigid registration algorithms for preserving the accuracy of

preoperative data is an important problem.

Non-rigid registration (NRR) techniques are capable of utilizing transformations that model local
deformations [2-4]. The numeric approximation of these transformations (i.e., determining their coefficients)
is a computationally intensive task that has so far prohibited their intra-operative application. This
technologic advancement will allow for precise fusion of a preoperative MRI (pMRI) with iCT images and
would essentially allow an intraoperative CT scanner to become a pseudo intraoperative MRI (iMRI) machine
at a fraction of the cost of a true iMRI. In other words: a less expensive version of an iMRI machine would be
developed. This would then allow a technology closely resembling iMRI to be more readily available to many
more patients, physicians, and hospitals owing to the decreased cost and lack of inconvenience of a magnetic
device with ferrous instruments. Accurate non-rigid registration has been shown to increase the margin of

tumor-tissue removal, which is correlated with improved patient outcomes [16,17]

In this paper we address an important obstacle that can help us to bridge the gap between the research
prototypes and methods we are developing and their broad clinical evaluation. We present
1. Results from a limited clinical study using the NRR technology to fuse iCT and pMRI including both

real and synthetically generated intra-operative data



2.

3.

Synthetic benchmarks which we developed to fine tune our algorithm and evaluate its accuracy
automatically

Open problems and directions for future work.

2. Materials and Method

2.1 Overview

The process of non-rigid registration involves multiple steps. Several of these steps require significant

manual effort and significant computational resources. Both of these requirements previously made the

complete application of non-rigid registration impossible during surgery. By leveraging supercomputing

facilities, and alternatively the commercial GPU, we overcome these logistical problems to accomplish the

goal of real-time NRR [3]. We divide our process into two overall phases (Figure 1). In the pre-operative

phase, we perform:

1.

Physical acquisition of the pre-operative images.

Segmentation of the pre-operative MR to obtain a binary mask of the intra-cranial cavity (ICC).
Creation of a patient-specific model consisting of a tetrahedral volume mesh of this segmented image.
Salient feature detection, where we select optimal candidates for “block matching”

Distribution of these images to the various remote (computational cluster) or local (GPU)

computational sites for use in the intra-operative phase.

The intra-operative stage has time-critical and non-time-critical stages. These include:

1.

Acquisition of the intra-operative image

Rigid registration of iCT to the pre-operative CT.

Sparse deformation field detection (Block Matching) between the iCT and the pre-operative CT
Solving for the dense deformation field which describes the non-rigid movement of the tissue
Deformation of the pre-operative images (CT, DWI, MR], etc.) according to the dense deformation

field.



Figure 1
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2.2 Pre-operative Phase

2.2.1 Image Acquisition
Physical acquisition of preoperative axial CT images are collected from a GE Lightspeed CT scanner
(Pewaukee, WI) in DICOM format with the thickness of the axial slices being at the most 0.8 mm with no

gantry tilt.

2.2.2 Segmentation
We separate the image into two regions in order to isolate the ICC, a process that is required to restrict the

elastic motion of the brain model to ensure it does not deform outside of the cranial cavity. Allowing such



deformations would be physically unrealistic but otherwise possible without the use of the patient-specific
model in the mechanical energy term of the NRR formulation [4]. Segmenting the intra-cranial cavity is a
semi-automatic process. We employed a combination of automatic operators, like region growing and level-
set filters, with slice-by-slice manual segmentation to correct any erroneously included regions. We used
Insight’s Slicer3D software, and ITK’s SNAP, parts of the Segmentation and Registration Toolkit [5], as well as

in one case a novel model-based segmentation method [6].

2.2.3 Generation of the Patient-specific model
Our NRR uses a patient-specific model to tailor the computation to an individual patient's anatomy. This
model uses a tetrahedral mesh (figure 4) generated from the segmentation produced in the previous step. Not

all meshes are equal, and this mesh has several properties that make it well suited to our problem [7].

First, the mesh must provide a reasonably close approximation of the surface of the meshed object. A mesh
which conforms perfectly to the image boundary would provide great fidelity, but at the cost of an excessive
level of detail and an overwhelming number of mesh elements. We strive for an equidistribution of
registration points. Next, the gradation of the mesh is an important property that may reduce interpolation
error by having elements of smaller size. However, it is important to be able to adaptively refine the mesh in
selected regions of interest to control computation time. Next, the shape of mesh elements is important, as
small angles may increase the condition number of the stiffness matrix. Mesh generation time is important,
as short times allow real-time mesh refinement. Extensive previous work was done to refine our meshing
procedure to produce a mesh best-suited to our application of Image Guided Neurosurgery [8]. We use the

red-green mesh algorithm discussed in [9].

2.2.4 Salient Feature Point Detection

The goal of the registration method is to recover the movement of the brain anatomy between the acquisition
of the pre-op image and the intra-op image. The heart of the algorithm is a window-bounded block-matching
algorithm that measures the sparse initial deformation field. We perform block-matching between the pre-

operative (or floating) image (MRI or CT) and the intra-operative (or fixed) image (CT). Before we do this, we



must target block matching to areas of the image that have a reasonable degree of structural information. We
do this because block matching between structured sub-image regions will be less error-prone than block
matching between regions with relatively less structural information. We call this stage point selection. We
begin by placing a point (hereafter called a registration point) at the centers of all voxels inside the region of
interest (ROI) of the floating image. This ROl is defined as the intersection of the floating image with the
tetrahedral mesh. The registration points define the centers of sub-regions called blocks. The variance of the
voxel intensities of each block is calculated, and a fraction of the blocks with the lowest variance is rejected.
The remaining blocks are considered to be better candidates for block-matching with the intra-operative

fixed image, which occurs in the next step.

2.3 Intra-operative Phase
The intra-operative phase begins with acquisition of the intra-operative CT images from a CereTom by

NeuroLogica (Danvers, MA). The DICOM images are 1 mm axial images.

2.3.1 Rigid registration

The first computational step in the intra-operative phase is the rigid registration of the pre-operative data to
the just-arrived intra-operative image. This step is required to remove the global rigid difference between
the images that is due to different patient position and acquisition times. The time between the first pre-
resection image and the first intra- resection image is generally long enough that the computational
requirements of rigid registration is easily satisfied. We use a rigid-registration by maximization of
normalized mutual information [10,11], implemented in the 3D slicer software package. This step generally

takes less than five minutes.

2.3.2 Block matching

In the block-matching phase we begin to estimate the difference between the two images. The inputs to block
matching are the pre-operative and intra-operative images to be registered, and the set of registration points
selected during the pre-operative point selection phase. In order to find the deformation at the registration

points we choose to perform a bounded exhaustive search by maximizing a measure of similarity between



small cubic image regions (or blocks). The block selection procedure is repeated for each registration point
in the pre-operative image. The resulting sparse deformation field is used as a rough estimation of the

displacement between the two images.

The optimal similarity measure is a function of several factors. In previous studies [NI08] we used the
Normalized Cross-Correlation. NCC is appropriate for mono-modal image registration, or image registration
between images of the same modality. NCC is suitable for iCT-to-iCT registration since there is a linear or
affine relationship between the two images’ joint probability density functions. We can expect the intensity of
any voxel in one image to be an affine function of the value of the corresponding voxel in the other image. This
assumption does not necessarily hold for images from different modalities. The intensity of a voxel in an MRI
is not an affine function of the corresponding voxel in a CT image. In fact, the intensity relationship between
these two images isn’t even functional - it is statistical [12]. A more complicated relationship often requires a
more sophisticated similarity measure, such as the Correlation Ratio or one of many measures derived from
information theory, like normalized mutual information (NMI). The most appropriate measure, however, is
dictated by many inputs: the modality of the images, and the specifics of the images such as image subject,
detector position, and lighting conditions [1]. We have compared the performance of several different
similarity measures in order to choose an optimal measure for our purposes of image-guided head and neck
surgery. To do this, we developed a set of synthetic benchmarks that are used to select the optimal similarity

measure for two CT or MRI images.

2.3.3 Solving for the dense deformation field

The sparse deformation field measured with block matching suffers from two problems. First, it is sparse and
discontinuous (defined only at the registration points). We wish to have a deformation which is defined
everywhere, and which is smooth. Secondly, it is noisy because the block-matching algorithm is imperfect.
The block matching measure may “choose” the wrong putative block, simply because it happens to be
numerically “closer” in terms of the pre-defined similarity metric to the target block. This is especially true in

areas with homogenous tissue intensity. The registration points with such erroneous block matchings are



called “outliers”. We previously considered both an approximation and interpolation method. This

competition is formulated as energy minimization problem:

W =(HU -D)' S(HU - D)+ U"KU (1)
where K is the mesh stiffness matrix, H is the linear interpolation matrix between the displacements
recovered by block matching and those at the mesh vertices, S is the block matching stiffness matrix (matches
with higher confidence are assigned higher weights), D is the vector for the block displacements, and U is the

unknown displacement vector at the mesh vertices. The stiffness matrix K reflects an estimation of the

physical properties of the brain tissue. At each iteration the following system of equations is solved:

F,=0,F_ =KU,

K +H'SH|U, = H'SD+F_, (2)

where HTSD is essentially the weighted displacement at mesh vertex, estimated from the displacements at the
surrounding registration points. The system of linear equations is solved using biconjugate gradient
stabilized method (implemented within the Gmm++ library [ ] with the diagonal preconditioner). The matrix
HTSH is block matrix and has a non-zero entry for each mesh vertex and edge, the cells of which contain
registration points. A vertex or edge cell is defined as the set of tetrahedra incident on the mesh vertex or

edge. The distribution of the registration points in the cells of the mesh vertices/edges affects the relative

magnitude of coefficients of this matrix and in turn the condition number of the linear system.

The tetrahedral finite element mesh produced by the image-to-mesh conversion has a dual role in the above
formulation. First, it is used in the mechanical energy (UTKU) of the system to model deformation of the brain
as a physical body. This is used to discover and discard the outlier registration points. At the end of each
iteration a certain fraction of outlier block matches are discarded. The discarded block-matchings are those
which were found to have low numerical confidence during block-matching, or which disagree with its
neighbors. Second, the mesh is also used to regularize (or smooth) the displacements estimated from the
minimization of the matching energy ((HU- D)TS(HU- D)) from block matching. Once the solution converges,
the algorithm is completed, and we have calculated a dense volumetric deformation that conforms to the

measured block-matchings. For a more precise treatment of this algorithm, see [4,13].



2.4 Computational Framework

In order for these results to be useful during surgery they must be available in real time. In practical terms,
this means a matter of minutes. There are several of constraints during surgery, and pausing the procedure
for more than a few minutes is unacceptable in terms of risk to the patient. This NRR method takes a matter
of hours to complete on a single computational node. The two different phases, pre-operative and intra-
operative, have different time constraints. The pre-operative stage (includes image preparation,
segmentation, mesh generation, and feature block/point selection) is not subject to constraints, and is
successfully completed on a single hot processing node. The intra-operative phase consists of rigid
registration, block matching and solving steps. This phase is subject to real time constraints. Block matching
is the slowest of the steps in the intra-operative phase. Our parallel version of block-matching, which
optionally employs real-time load balancing, allows execution of the block-matching stage in a matter of a few
minutes on co-operative workstations with 50 processors. We have evaluated the use of a cluster
supercomputer, grid computing resources (the TeraGrid), and a heterogenous GPU architecture to solve
overcome these computational requirements. Our experience has shown us that scheduling problems make
large distributed systems like the TeraGrid inappropriate for real-time use (Technical Report). While the cost
of maintaining a computational cluster is prohibitive, cluster computing is a suitable environment for this
work. We also investigated using a heterogeneous architecture making use of the GPU to perform block
matching. The advantage of employing the GPU is that it moves the supercomputer next to the OR, and
significantly reduces the cost of this NRR solution. In [13, 14] we present a detailed treatment of the

computational framework we employed in our evaluation, described next.

2.5 Construction of a Synthetic Intra-operative Image



We use software described in [9] to generate the synthetic deformation fields. The software follows a method
described by Rogelj et al in [12]. We create isotropic lattice (grid), and assigns a deformation vector at each
node of the lattice. This deformation vector is drawn from a Gaussian distribution with parameters mean p =
0 and variance o [5-25], where higher o results in larger deformation. These deformation vectors at the nodes
of the lattice form a sparse and discontinuous deformation field. In order to obtain a more realistic
continuous field, and to generate a dense deformation field, we then regularize these deformation vectors
using thin-plate splines across the entire image volume. This dense deformation field can then be applied to
the pre-op CT, resulting in a synthetically deformed CT which may play the role of the intra-operative CT
during image registration. This synthetic intra-operative CT may then be used to evaluate the performance of
the registration algorithm, compared with this known (synthetic) deformation field. An example deformation

field is shown in figure 2.

Figure 2: An example deformation field volume. The deformation field shown is a 3D deformation volume, on the left,
with magnitude of deformation shown as color. A 2D slice is extracted in the center. The field vectors for the same
deformation field are shown on the right. All deformations are in units of voxels.
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Results

We include two studies in this work. The first uses pre-operative data exclusively. We use these pre-operative
CT images to answer a single question: does CT have sufficient definition in the soft tissue regions to be a good
candidate for intra-operative use as a fixed image during non-rigid registration? To answer this question, we
require a source of ground truth with which we will assess the performance of the registration algorithm. We
use the previously described method to generate a synthetic deformation that serves as our ground truth. We
then deform each pre-operative CT according to the synthetic deformation, and treat this new deformed CT as
the intra-operative image. We perform segmentation, mesh generation, point selection, block matching and
dense deformation field estimation as previously described. We perform the final two steps three times, once
for each similarity metric: NMI, PMI and CC. We also include here results from using a new heterogeneous
architecture for block matching that makes use of the GPU. The timings produced while using the GPU are
sufficiently short to satisfy these strict requirements, however only single-precision arithmetic is available
currently in commercial GPUs. This drawback will soon be rectified.

We evaluate the quality of registration in several ways. First, we calculate the matching error of
block matching by subtracting the recovered displacement from the true displacement for each measured
displacement vector, located at the registration points. This measure is reported in millimeters. Next, we
calculate the registration error by subtracting the final dense deformation calculated at the end of each
registration with the true deformation, for each mesh vertex of the finite element mesh on which the dense
deformation is defined (figure 4). This measure is also reported in millimeters. In addition, the symmetric
Hausdorff distance (SHD) is a measure of the distance between two point-sets as previously described [15].
We calculated the ratio of the SHD of the images rigidly registered to the SHD of the same images non-rigidly
registered. Finally, mutual information may be used to assess the quality of a registration, as it measures how
much information is contained in the relationship between the two intensity distributions. Here we use the
normalized mutual information variant.

The second study performed uses actual intra-operative data. These images are captured intra-
operatively with the previously described intra-operative CT scanner. We present three clinical cases that
correspond to pre-operative synthetic cases 4-6. The registration method is the same as for the synthetic

case, however the intra-operative data is not synthetically deformed in any way. In this study we are



attempting to recover the real deformation caused by brain shift and mass effect during surgery. This
presents a challenge for accuracy assessment and validation. In the synthetic case we have a readily available
source of ground truth: the synthetic deformation. In these clinical cases there is no ground truth. For each
case, we selected five points in the pre-operative image, and found the same five homologous points in the
intra-operative images. We then treat this deformation as the true deformation and compare it to the
deformation recovered at the same points with this non-rigid registration algorithm. The selection of these
specific points represent a range of anatomical landmarks, some near the resection margin, and some farther
from the resection margin in deep brain tissues. Because there is some subjectivity in the selection of these
landmarks, and because the task is a difficult one with these images, we used two independent experts, a

neurosurgeon and a radiologist, to independently select landmarks.

Synthetic Study

For each case in table 1 we report:

)] The maximum and average of the block matching error distribution
(i) The maximum and average of the overall registration error distribution
(iii) The ratio of the Hausdorff distance between the two images when non-rigidly registered to that

of the images rigidly registered
(iv) The ratio of the normalized mutual information between the two images when non- rigidly
registered to that of the images rigidly registered
We show improvement over rigid registration alone for all patient cases, and significant improvement for
cases 1, 2,5 and 6. We ran registrations using GPU block matching for synthetic cases 1 and 3. Case 1 GPU
results are illustrated in figure 3. These results are similar in quality to the results obtained with the
traditional co-operative workstation environments. This is significant as it implies that the (far cheaper) GPU
is a viable alternative to the co-operative environment.

Clinical Study



Synthetic data in the form of generated deformations that produce synthetic intra-operative images is an

important and standard way of assessing the performance of a registration method. Synthetic cases, however,

Figure 3 - Case 3 with GPU block-matching: From left to right: Pre-operative, intra-operative, deformed pre-
op, pre-op overlaid on intra-op, deformed pre-op overlaid on intra-op

are not sufficient simulators of clinical experience. Real tissue has varying elastic properties (and thus

different reactions to the same applied force) that are not effectively simulated. Real intra-operative brain
shift is very different than the best synthetically derived deformations. The problem of producing good
ground-truth from real intra-operative images, however, is a serious impediment to the evaluation and
validation of registration techniques such as ours. This section details the results of registration of three
clinical cases using real intra-operative CT, and in one case post-operative CT.

Our pre-operative CT are generally detailed enough and have sufficient spatial resolution to identify
- with sub-millimeter accuracy - a number of anatomical landmarks. The intra-operative images we use,
however, present a real challenge. Owing to various causes images acquired during surgery suffer from
several undesirable phenomena. The intra-operative images we received had a significantly lower signal-to-
noise ratio than the pre-operative images of the corresponding patient. A second source of difficulty, which
exacerbates the first, is the presence of movement artifacts due to the (unconscious) patient’s breathing
motion in the device. This creates motion artifact that manifest as streaks or concentric circular shapes. These

two phenomena combined make the reliable identification of homologous anatomical landmarks between

Figure 4: Registration error for case 4.
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intra-operative and pre-operative images difficult and error-prone, and sometimes impossible. We captured
five anatomical landmarks on each set of images. The result of this registration method as compared with

their anatomical landmarks is listed in table 2.

Discussion

In this study we have performed several practical feasibility studies of a FEM-based non-rigid registration
algorithm using intra-operative CT. This study includes six sets of pre-operative CT and MRI, of which half
are supplemented by intra-operative or post-operative CT follow-ups. We used these data to rigorously
evaluate the non-rigid registration method. To this end, we developed two mutual-information based metrics
to supplement the existing similarity metric, and created a synthetic benchmark to evaluate the performance
of these metrics applied to all six cases.

The synthetic benchmarks show that the normalized cross-correlation (NCC) similarity metric based
block matching and registration algorithm out-performed both Normalized Mutual Information (NMI)[10,11]
and Pointwise Mutual Information (PMI) [12,18]. The NCC registration algorithm achieved an average
accuracy improvement of 4.14 times, compared to 1.84 times improvement for NMI, and a 3.48 times average
improvement for PMI. This result is not surprising. The mono-modal nature of the CT-to-CT registration
allows us to be confident in the assumption of an affine relationship between the intensity distributions of the
pre- and intra-operative images. The NMI, while more flexible, is more sensitive to the small block size we
use. Our results show that the PMI metric is nearly as accurate as NCC, and clearly does not suffer from the
shortcomings of the NMI metric. We suggest that the PMI be evaluated further as a multi-modal block
matching metric in this framework.

One of the questions we attempt to answer in this study is whether CT has enough soft tissue
definition to successfully complete our relatively sparse displacement-recovering block-matching approach.
We believe that we have shown that, given a sufficiently high-resolution pre-operative CT, we can recover a
deformation to within 1.39 mm of the actual synthetic value on average, which is much better than rigid
registration alone (4.35 mm average error). This study suggests strongly that, given an intra-operative image

of similar articulation, we may expect similar accuracy. We conclude that this synthetic study implies that



block-matching between a pre-operative and intra-operative CT is possible using either the Normalized
Correlation Coefficient or the Pointwise Mutual Information.

We next explored the three cases that present clinically acquired intra-operative CT. The three cases
involved correspond to cases 4-6 of the synthetic study. That is, the pre-operative CT for cases 4-6 in the
synthetic study are the same images as the pre-operative CT for cases 1-3 in the clinical study. Cases 1 and 2
involve cancerous neoplasms of the frontal and ethmoidal sinus cavities, while case 3 involves a defect of the
skull base resulting in a nasoethmoidal encephalocele. In cases 1 and 2 we attempt to register the pre-
operative CT with a CT acquired intra-operatively. In case 3 the fixed image is a post-operative CT acquired
on a similar scanner as the pre-operative CT. There was no CT contrast present in the images, with the
exception of the pre-operative case 3 image. We first note that the pre-operative images in all cases have
superior fidelity than the intra- (and post-) operative images. This manifests itself in several ways: the intra-
operative images of cases 1 and 2 have a relatively low signal-to-noise ratio and are visually very noisy and
grainy (the intra-operative image acquisition delivers a lower dose, which explains this phenomenon). The
post-operative scan available for case 3 has a visually similar noise profile to the pre-operative scans, but has
a lower soft-tissue articulation. In addition, the post-operative scan has lower resolution in the Z-direction.
These are all undesirable properties in an image registration problem. If the noise in an image overpowers
the features of the image, any similarity metric we use will perform poorly. The registration is also sensitive
to the resolution of the input images, as it will be unable to detect block matchings that reside in-between the
available slices. In practice we increase the resolution of the registered image by interpolating at points
between the available data. This interpolation will obviously lead to inaccuracies as the interpolation nodes
(available image slices) have larger slice spacing. The fidelity of a medical image such as those we deal with
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depends on many scan parameters, and setting those parameters is a problem of mutual accommodation of
sometimes competing goals: there are many outcomes to optimize.

The landmark acquisition for the three clinical cases was difficult. The quality of the intra-operative
scans made finding reliable landmark pairings a hard task. Some of the landmarks captured have a relatively
high confidence: the ventricles are an easy feature to discern, even in a very bad image, and some of the
landmarks (particularly near the tumor of interest) lie in relatively ct-homogenous tissue. That said, the
difficulty of landmark matching in CT is an elocution of the motivation for our study. Nevertheless, expert-
acquired landmarks are the best ground truth available to us.

Our results for the clinical study show that more work remains to be done to use this registration
method with intra-operative CT. The improvement in landmark error (measured at each individual pair of
landmarks) was between 3.5 times better and 4.18 times worse than rigid registration, with an average
improvement across all landmarks of only 1.19 times, or 19%. That said there is a correlation between the
block variance around an individual landmark and the registration accuracy at that landmark. The higher the

Figure 6 block variance is at a landmark, the
higher the relative improvement is in
registration accuracy. This
relationship is described in figure 4.

We ran a similar study of a
synthetic deformation, which show
the same trend in figure 5: increased

block variance yields lower

registration error. There are two
relevant sources of the variance in our images. First is the variance of a block due to the presence of an
anatomical or functional feature in the image. We call this source the feature variance. The second source of
variance in a block is noise, either random quantum mottle or artifact noise, as previously described. We call
this noise variance. Refer to FIGURE 6 for the pre-op CT, pre-op MRI, post-op CT, and block variance images
for each of these images from case 6. These block variance images are produced by calculating the variance of

an isotropic block of 3-dimensional centered at each voxel coordinate. We see that in the pre-operative CT (a,



with contrast), the block variance (d) is largely coincident with the edge features in the image. The ventricles,
large cyst, sulci, and midline are all displayed in the block variance image. In addition, regions that are largely
structurally void in the CT are largely homogenous in the block variance image. This is a characteristic
conducive to high registration accuracy. On the other hand, in the intra-operative image (b), the intra-
operative block variance image (e) shows less feature variance and more noise variance than the pre-
operative images. In other words, the variance pattern largely does not coincide with structural edges or
features in the image, but rather the dominant source of variance is noise. This strongly suggests a hypothesis
for the relatively poor performance of the clinical study: the intra-operative images used have poor
articulation of soft tissues, and low signal-to-noise ratio, which causes block matching to generate a large
number of erroneous matches, or outliers. Contrast this with the pre-operative MRI (c) and its block variance
image (f), which shows a much larger range of feature variance, and less homogenous and noisy variance
regions. The same is illustrated in FIGURE 7 where we see the distribution of block variance is much broader
in MRI (red) than CT (green). We draw the conclusion that the major limiting factor in the improvement of
this non-rigid registration method is the acquisition of superior quality intra-operative CT scans. The dual of
this problem is the development of noise-robust similarity metrics, and similarity metrics that perform well
in the absence of highly articulated soft tissue. Alternatively, it would be worth investigating to extend
Andronache et. al.'s method to detect structureless patches to choose registration points, rather than simply
choosing the highest variance blocks. Andronache uses Moran's spatial autocorrelation coefficient to do
exactly this task [cite]. Alternatively, it may be beneficial to use edge detection images to weight possible
feature points by their inclusion or

Figure 7
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Conclusion

The studies performed in this paper are a good first step toward the advancement of our state-of-the-art non-
rigid registration algorithm from mono-modal MRI-to-MRI to multi-modal CT-to-MRI. The objective of
achieving superior performance with intra-operative CT is important for reducing the cost and increasing the
accessibility of real-time non-rigid registration for image guided neurosurgery. We believe the studies

included here, particularly the synthetic studies, show the feasibility of this goal.

Table 5.2
Case Metric Matching error Registration error SHD NMI Ratio Avg
max avg max avg Improvement

CcC 17.92 0.92 6.34 1.02 1.49 8.84 4.27

1 NMI 1897  5.05 10.16 2.96 1.91 1.81 1.47
PMI 12.85 0.66 6.38 1.16 1.51 8.60 3.76

CC 20.10 1.68 6.94 1.56 1.66 9.33 3.86

2 NMI  20.64  6.59 12.98 3.71 1.93 1.56 1.62
PMI 18.60 2.66 12.71 1.65 1.58 7.56 3.65

CC 15.03 1.12 8.49 2.62 1.94 3.16 1.47

3 NMI  15.78 5.28 9.59 3.04 2.02 1.23 1.26
PMI 16.91 1.87 8.79 2.77 1.94 2.84 1.39

CC 11.75 0.60 4.80 1.36 1.60 1.80

4 NMI  15.03  4.03 9.77 2.06 1.25 1.19
PMI 11.70 0.37 5.04 1.52 1.55 1.61

CC 11.70 0.52 2.74 0.58 2.50 3.80 8.58

5 NMI  16.03  4.29 5.68 1.13 2.59 2.50 3.54
PMI  10.05 0.40 2.83 0.67 2.49 3.65 7.15

CC 22.23 2.73 5.76 1.23 1.62 1.72 4.86

6 NMI  22.69 6.26 15.91 4.34 1.98 1.44 2.01

PMI  21.98 2.59 7.96 2.89 1.61 1.71 3.32




Table 5.3: A summary of the results for the clinical study including the magnitude
of expert-derived deformation, the rigid registration landmark error, and the non-rigid
registration landmark error.

Case Point True Deformation (mm) RR Error NRR Error (mm)

CC NMI PMI

1 (-0.43,-0.87, 1.25) 1.59 0.89 1.81 0.71

2 (-0.43,6.54, -2.50) 7.02 7.39 7.71 9.59

3 (-0.87, 0.00,-0.50) 0.87 3.64 4.72 2.56

4 (-3.49, -3.06, -3.75) 5.96 3.47 2.45 5.99

4 5 (-1.75,-0.45, 0.00) 180  2.10 0.79 2.40
6 (-6.55, -0.87, 0.00) 6.60 6.81 5.41 7.26

7 (0.43, 0.87, 0.00) 0.98 1.11 2.48 2.56

8 (0.44, 1.30, 0.00) 1.38 3.55 6.06 3.49

9 (-0.44, 1.31, 1.25) 1.86 4.33 6.66 3.67

1 (-1.31, 0.87, -1.00) 1.86 1.82 1.60 2.95

3 (-0.44,1.74, 3.00) 3.50 1.39 4.57 1.73

4 (-0.44,0.43, 3.00) 3.06 0.88 2.53 1.39

) (-3.49, 0.87,1.00) 3.73 4.46 4.20 5.25

- 6 (-0.87, 4.37, 2.00) 488 423 4.83 4.39
7 (2.18, 4.36, 2.00) 5.27 4.22 5.12 3.76

8 (0.44, 3.49, 0.00) 352 3.29 4.56 3.21

9 (0.00,4.80, 0.00) 4.80 4.98 6.28 4.62

10 (-0.87, 3.06, 0.00) 3.18 2.53 2.99 2.72

11 (0.44, 5.23, 1.00) 5.35 5.20 6.09 5.12

1 (-3.93 2.18,-5.00) 6.72 5.92 4.58 6.04

2 (1.74,3.05, 2.50) 4.32 2.66 6.26 4.36

3 (2.18,-0.44, 2.50) 3.35 2.51 8.04 5.74

4 (1.75,0.00, 2.50) 3.05 219 4.91 3.29

6 ) (-1.75, 5.67, 5.00) 7.76 6.74 10.69 7.88
6 (1.75, 4.36, 5.00 ) 6.86 4.60 7.17 4.79

7 (0.00,-1.31, -2.50 ) 2.82 3.44 2.43 3.38

8 (1.74, 3.49, 0.00) 3.90  2.98 5.92 2.94

9 (5.24, 2.62, 0.00) 5.85 6.25 6.80 7.61
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