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Abstract In this paper, we assess the impact of mesh generation oriRipd-Reg-
istration of brain MR images. The solution accuracy and freed of finite element
solvers depend on how well the underlying mesh approxintatesurface of the
biological object (fidelity) and how well the elements ofghiesh are shaped (qual-
ity). Fidelity and quality, however, are two contradictirggiuirements, as increased
fidelity usually implies poor quality and vice versa.

In this paper, we evaluate three public mesh generators xamire how this
quality-fidelity trade-off affects the accuracy and theexpef non-rigid registration
solvers for brain images.

1 Introduction

In Computer Aided Surgery (CAS) and specifically in imagedgdi neurosurgery,
Magnetic Resonance Images (MRI) obtained before the puedgre-operative)
provide extensive information which can help surgeons &n @ resection path.
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Careful planning is important to achieve the maximal renhofanalignant tissue
from a patient’s brain, while incurring the minimal damagéealthy structures and
regions of the brain. However, current practices of newgisal resection involve
the opening of the scull and the dura. This results in a dedition of the brain
(known as the brain shift problem) which creates discrejgsnioetween the pre-
operative imaging data and the reality during the operaiazorrection is possible
using non-rigid registration (NRR) of intra-operative MiRith pre-operative data.

In this paper, we target Finite Element (FE) based appraaftitehe non-rigid
registration [6]. These methods use real-time landmaidking across the entire
image volume which makes the non-rigid registration mo@ieate but computa-
tionally expensive, as compared to similar methods thatsustace tracking [8].
The non-rigid registration problem should be solved fastugi, so that it can be
usable in clinical studies [2, 3].

Real-time Image-to-Mesh (I12M) conversion is a critical gmnent of FE-based
non-rigid registration of brain images. Moreover, its $iwo in N dimensions (with
N > 4) is important for handling geometric uncertainties causgrespiratory mo-
tion which complicates planning and treatment.

A mesh is characterized by ifslelity andquality. Fidelity measures how well
the mesh boundary resembles the surface of the biologigatbiQuality assesses
the shape of mesh elements; the higher the minimum dihedgdé af the mesh
elements is, the higher the quality.

It is well known that the quality of the mesh affects both tlcewaacy and the
speed of the solver [14], because the angles of the elem#htsrice the condition
number of the stiffness matrix. In the literature, a good dé&ffort has been put
towards high-quality mesh generation [5, 9, 10, 16].

It is not clear, however, what the impact of fidelity on the wecy and speed
of the solver is. The reason is because there is a complitegdd-off between
quality and fidelity. The need for a better surface approxiomaalways implies a
deterioration of mesh quality, simply because well-shaglechents cannot fill the
space formed by sharp surface creases or by surface paitghodrvature. Also,
higher fidelity usually results in an increase of the numbienesh elements which
in turn affects both the mesher’s and the solver’s speed.

In this paper, we evaluated the impact of three public meglegdors [9, 11, 15]
on the accuracy and speed of NRR. The meshers were chosédullgaxe cover
a wide range of mesh generation approaches. The Delaundyatggsithm in [9]
offers simultaneous meshing of the surface and the volunttgeodbject. The algo-
rithm in [15] is Delaunay but requires the surface of the obges input. Finally, the
algorithm in [11] is an optimization-based technique whicmpresses an initial
body-centered cubic lattice (BCC) to the surface. (Seei@e8tfor more details.)
For each mesher, we conducted an extensive series of exggsimontrolling the
fidelity of the output mesh used for the subsequent NRR [6].

We concluded that meshes with very bad fidelity do not afteeticcuracy dras-
tically. On the contrary, meshes with very good fidelity ithe speed of the mesher
due to the poor quality they exhibit. We also observed thastieed of the solver is
very sensitive to mesh quality rather than to fidelity. Festareasons, we think that
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Fig. 1 The non-rigid registration procedure.

mesh generation should first try to produce high quality mmespossibly sacrificing
fidelity.

2 Registration

As our target application, we used the non-rigid registrathethod described by
Clatzet al.[6] which is shown to be robust enough to be usable to clirsaadies.
Below, we outline the main aspects of this NRR method.

The method consists of three steps, nanfebture points selectigiblock match-
ing, andsystem solutiorSee Figure 1 for an illustration. During feature pointgsel
tion, a sparse set of points is chosen from the pre-opeliatage. These points are
calledregistrationpoints. Then, the correspondence of these points into the-in
operative image is found via a block matching scheme. Spattifj for a given reg-
istration pointr, a small window around it in the intra-operative image igsked;
the corresponding poimt reported is the one that maximizes the correlation coeffi-
cient betweem’ andr.

Having computed the deformation vec@ion the registration points (as a result
of the block matching step), the deformation vector on thehmeerticesU (the
unknowns) is calculated so that the following energy is mined:

W=(HU-D)' (HU-D) + U'KU (1)

Error energy Mechanical energy
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In the above equatiork is the|U| x |U| mechanical stiffness matrid is the
linear interpolating matrix of sized| x |U|; this matrix contains the measurements
of the linear shape functions on every registration poittite Tontributing shape
functions for each registration pointare those defined over the mesh nodes whose
forming mesh element includes

The block matching deformatiah of a registration point; affects the deforma-
tion of a mesh node;j, only if v is incident upon a mesh elemesthat contains
rj. In fact, if the minimization of the error energy (also knoagmatching energy)
in Equation (1) was perfect (i.e., if it vanished), then time&r interpolation (of the
solution of the mesh nodes efonr; would give the valuel;. As Clatz shows in [6]
(and as we can see from Equation (1)), this method tries tonmega this exact error

energye:

E:\/(HU—D)T(HU—D):||HU—D|| 2)

which is the interpolation error on the registration pointsz, ..., rp|.

The mechanical energy in Equation (1) is used to model therdeftion of the
brain as a physical body based on FEM. This, in turn, is usdistmver and discard
the outlier registration points, i.e., points whose defation estimation from block
matching contradicts the physical properties of the badm.information about the
construction of the mechanical stiffness mattixsee Delingette and Ayache [7].

The deformation vectol, over which energyV is minimized, is computed
through the following iterative equations:

Fo=0,
(K+HTH) Ui =H'D+Figi=12,...,
Fi=KU,i=12...

In [6], it is proved that the system above converges. Alssgoke thak +H "H is
the matrix responsible for the robustness of NRR; its camditumber affects both
the accuracy and the speed of the solution.

3 Mesh Generation

In this paper, we tested the influence of three meshers on N&Rely,High Qual-
ity Delaunaymesher (HQD) [9],Tetgen[15], and Point Based Matchingnesher
(PBM) [11]. Below, we briefly describe each of them.

HQD meshes both the surface and the volume of the object aathe time with-
out an initial dense sampling of the object surface, as is#se in other Delaunay
volume techniques [12, 13]. As a result, the number of elésefithe output mesh
is small.

Tetgen is a Delaunay mesh generator as well. However, in@ssthat the sur-
face of the object is already meshed and represented aslaegdobn. This polyhe-
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dron is also known asRiecewise Linear CompléRLC). Tetgen requires a PLC of
the object surface as its input. We used the algorithm indditie PLC generation,
implemented in th€omputational Geometry Algorithms Librag@GAL) [1].

PBM is an optimization-based approach. It starts with agidation of a regular
grid, i.e., a body-centered cubic lattice (BCC), and thecoinpresses the outer
nodes closer to the object surface as a result of energy nzation. In fact, the
smaller the energy achieved, the better the fidelity of titpwumesh. This method
is able to recover the surface of multi-tissue objects. is plaper, only the single-
tissue version of PBM is considered.

4 Evaluation

4.1 Methodology

As mentioned in Section 2, registration computes the dedition on the mesh
nodes, so that the error enefgy= ||[HU — D|| is minimized. Mesh generation affects
how accurately the error energy is minimized. Thereforeasgess the accuracy of
registration by keeping track of this erriar For every run, we let the system iterate
for 10 times.

Observe, however, that the outcome of the registrationmtipen the accuracy
of the block matching step (vectB). Also, notice that the mesh does not affect the
result of block matching (see Figure 1). Since we are intedsis evaluating the im-
pact of mesh generation on registration, we wanted to majistration independent
of block matching. For this reason, we synthetically defedrthe pre-operative im-
age according to the bio-mechanical properties of the biMare specifically, we
initially ran the registration procedure to register the-pperative with the intra-
operative image as shown in Figure 1, but that time we did o@i$ on the behav-
ior of the mesh. We just wanted the solution on the mesh nddes, by (linearly)
interpolating the solution of the mesh nodes on any pointefinage, we obtained
a synthetically deformed (intra-operative) image. Afteistinitial registration, all
the other registrations (aiming at evaluating mesh geioeraare performed be-
tween the pre-operative and the synthetically deformed@nthnat is, the real intra-
operative image is replaced by the deformed one. In thiswachieve two things:

e we know the “true” deformation on any point, and thereforekmew the “true”
block matching result on any set of registration points, and

e we do not simulate an arbitrary deformation, but rather #istéaone, because
the deformed image was obtained taking into account thé@tggproperties of
the brain through the stiffness matkxof Equation 1.

For the initial registration procedure employed to syrittadty deform the pre-
operative image, we set the parameters to the same valueseibad in [6] with
parametel assigned to 0. In this way, we obtained a set of@DO0 registration
points.
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Since we want to measure the influence of mesh generatioy,tbal mesh
changes in every experiment. That is, for all the varioushegsthe pre-operative
image and the set of registration points (together withrtthefiormatiorD of course)
remain fixed. Note that for these subsequent registratiooguiures, we do not re-
ject registration points as potential outliers, simply dese the synthetic deforma-
tion implies that there are no outliers (this is not the casétfe initial registration).
For the same reason, we do not weight ve@according to the confidence of the
registration points deformation. For all the experimepgsameteA was setto 0.

4.2 Measuring and Varying Fidelity

As mentioned above, we wish to have control over the fidelitthe output mesh
produced by the different meshers. In this paper, we uséwhbesided Hausdorff
distance Hto measure fidelity.

In our case, metriél is defined upon two finite sets B as follows:

H (A,B) = max{h(A,B),h(B,A)}, where
h(A,B) = maxmin||a—b||
acA beB

The lower the value ofl (A, B), the more similar set8, B are. In factH (A,B) is
equal to 0 if and only if seté, B are identical.

Fidelity of a mesh is measured as the 2-sided Hausdorffrdistd of the fol-
lowing sets:

e setA: a densely sampled point set on the surface of the biologhyjekt, and
e setB: a densely sampled point set on the boundary facets of the.mes

Notice that the mesh boundary point 8atloes not consist of only boundary mesh
vertices. The reason is because otherwise, at least onefslteeHausdorff distance
of the meshes produced by HQD would always be 0 (or very clog®),tsince
this method guarantees that the boundary mesh verticesdlagsply on the object
surface.

Having defined fidelity, we proceed by explaining how we contidelity for
each mesher.

For HQD, this is possible through the parameigisee [9] for a more detailed
explanation). Low values ad increase the sampling on the object surface which
yields better fidelity. High values o produce meshes whose boundary crudely
approximates the real surface.

For Tetgen, we had to change the fidelity of the PLC given by CGRe, there-
fore, had to adjust two parameters responsible for the Pfid@dity. The first im-
poses an upper bound on the circumradius ofDle¢éaunay ballsand the second
forces an upper bound on the distance between the circuercefithe boundary
facets and the corresponding center of their Delaunay.bddbse information can
be found in [4].
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Table1 Meshes with varying fidelity obtained by HQD.
H||Minimum Dihedral Angl¢Average Minimum Dihedral Anglg¢Tetrahedrh#VerticegCondition NumbejError]

22.81 8.68 39.92 40 23 35,205.00 0.4Q
20.22 5.86 35.73 52 27| 37,988.0( 0.36
19.94 2.73 30.99 96 41 93,179.00 0.47
17.92 4.10 31.81 89 38 62,404.00 0.52
17.52 5.46 33.74 61 30 31,352.00 0.49
16.57 4.10 31.39 77 34 24,984.00 0.32
16.15 6.17 31.83 148 61 99,449.00 0.30
15.28 7.70 37.53 168 71 40,350.00 0.27
13.49 4.08 33.39 297| 113 46,260.00 0.4Q
9.86 2.46 34.05 228 89 26,399.00 0.38
9.23 3.61 36.15 425 157 51,487.00 0.25
9.09 6.01 35.95 578 200 37,427.0( 0.26
8.72 2.36 33.63 385 137 53,977.00 0.28
8.47 4.07] 36.1(¢ 771 261 292,370.00 0.21
7.11 1.27 36.18 1,157 367 319,850.00 0.27]
6.24 0.34 35.71 1,681 521 594,820.00 0.24
5.84 0.92 35.93 2,746 814 1,559,500.0P0.25

For PBM, controlling fidelity is accomplished by adjustimgtparametek . This
parameter defines the trade-off between quality and fiddligh values oA make
the optimization more sensitive to good fidelity, while loalwes do not change
a lot the position of the initial (high-quality) BCC. Howayave observed that
does not offer a very flexible control over flexibility. Thévee, to get meshes of
substantially different fidelity, we had to change not ohlput also the density of
the initial BCC.

4.3 Resaults

Table 1 presents the results obtained by various mesheggdthy HQD. Each row
corresponds to a singe mesh. Coluhircontains the Hausdorff distance between
the mesh and the object surface. The table illustrates mmesigered in increas-
ing fidelity (i.e., in decreasing Hausdorff distance). Bakhows the minimum and
the average minimum dihedral angle of the mesh, as well atotaenumber of
tetrahedra and vertices of the mesh. The condition numlpgctael is of the matrix
K +H "H which is responsible for the accuracy and speed of the NRRs($ee
Section 2). Finally, the last column reports the NRR errors-dafined in Equa-
tion (2) —obtained after the end of the registration process

We observe that the error does not fluctuate consideralilthédkrrors are about
less than half the size of a voxel (the size of the voxelislix 1), even when thél
distance is very large. Figure 2 illustrates the meshesradatdy HQD for the best
and the worst fidelity.
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(a) H equal to 584 (best fidelity). (b) H equal to 2281 (worst fidelity).
Fig. 2 Meshes produced by HQD.

Table2 Meshes with varying fidelity obtained by Tetgen and CGAL.

H||Minimum Dihedral Angl¢Average Minimum Dihedral Anglg¢Tetrahedrf#VerticegCondition Numbe}Error]

23.23 5.60 24.09 262 104 292,820.00 0.25
20.03 5.60 24.21] 264 105 92,234.0$ 0.41
18.84 3.61 20.51 371 142 4,175,200.0p 0.36
17.33 7.36 24.5] 207 82 123,670.00 0.41
16.25 4.92 28.11 179 148 211,360.00 0.40
14.98 6.97 26.84 14174 59 17,882.0P 0.50
14.34 4.02 22.16 609 224 1,098,800.0P0.33
13.53 4.92 28.49 156 143 298,850.00 0.36
12.43 6.88 26.72 320 185 1,209,500.0P0.39
11.47 5.77 25.83 227 88 58,552.0P 0.42
10.22 3.76 21.82 1,052 377 1,715,700.0P0.46
9.74 4.5] 21.117 946 337 4,400,400.0D0.37
8.54 2.20 21.58 1,504 531 2,418,900.0p0.41
7.92 2.29 21.54 2,014 710 28,992,000.0p0.45
7.35 1.88 20.77 2,539 878 6,459,100.0p 0.43
6.02 1.52 21.17 7,008 2424 1,941,500,000.00 n/q
5.88 1.33 20.65 4,547 1585 205,230,000.00 n/a

Table 2 shows the results for Tetgen. Similarly, fidelity slo®t seem to affect
the error considerably. Also, although the minimum dihédrales are larger than
those in HQD, the average minimum dihedral angles are 10 tiefjfees less than
those in HQD. This results in generally higher error than eh®r in HQD, but
still the differences in accuracy are not very obvious. Hasvethe much larger
condition numbers affect the speed of the solver a lot. Alstuar the bottom two
runs (corresponding to the meshes with the two best fidedilyas and with the two
higher condition numbers), the solver could not even cayeerigure 3 illustrates
the meshes obtained by Tetgen for the best and the worstyideli

Table 3 presents the results for the PBM mesh. We observehbatuality is
very good: the minimum and the average minimum dihedralesyglach perfection.
This results in much lower condition numbers and generailyel error than HQD
and Tetgen. Again, we observe that fidelity does not playithportant role in the
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(a) H equal to 588 (best fidelity).(b) H equal to 2323 (worst fidelity).
Fig. 3 Meshes produced by Tetgen and CGAL.

Table 3 Meshes with varying fidelity obtained by PBM.
H||Minimum Dihedral Angl¢Average Minimum Dihedral Anglg¢Tetrahedrb#VerticegCondition NumbelError]

21.02 60.00 60.00 465 139 122,470.00 0.19
19.54 60.0Q 60.00 1,144 303 203,230.00 0.53
18.3( 60.0Q 60.00 2,126 519 223,540.00 0.50
15.39 41.21 54.43 465 139 19,711.00 0.17
14.25 35.54 54.48 1,144 303 23,405.00 0.35
13.94 31.68 53.83 1,144 303 21,213.00 0.29
13.58 19.417 53.09 1,144 303 18,980.00 0.27
12.61 39.27 53.81 465 139 16,897.00 0.18
12.02 35.77 53.55 465 139 15,978.00 0.19
10.39 34.13 54.7§ 2,124 519 29,397.00 0.17
9.88 31.92 54.22 2,126 519 25,926.00 0.17
9.39 30.04 53.63 2,124 519 23,485.00 0.17
7.01 59.99 60.00 18,780 3811 367,690.00 0.04
6.42 14.28 55.15 5,764 1277 21,300.00 0.15
5.25 35.61 56.83 18,780 3811 101,700.00 0.09
4.99 31.92 56.47 18,780 3811 78,449.00 0.09
4.94 27.5(0 56.13 18,78( 3811 76,065.00 0.09

accuracy of the NRR. Even meshes with very bad fidelity yiglceaor less than
half the size of the voxel. Figure 4 illustrates the mesheaiobd by PBM for the
best and the worst fidelity.

As you can see in the last two rows of Table 2 (where the ermfais the low av-
erage minimum dihedral angles seem to substantially affecspeed of the solver:
in these two specific runs the solver did not even convergen,Aee that in these
two rows the condition number is extremely large. We wanteldok into the tim-
ings of both the meshers and the solver in more depth, and kaethe merit of
fidelity to speed is.

We selected 5 meshes from each method of approximately the Bdelity re-
spectively and measured the time for meshing and the timediwing the regis-
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(a) H equal to 494 (best fidelity). (b) H equal to 2102 (worst fidelity).

Fig. 4 Meshes produced by PBM.

Table 4 Timings (in seconds) for various meshes obtained by diffeneethods. Both the mesh
and the solver execution times are reported.

HQD Tetgen PBM
H Mesher Solver TotaMesher Solver TotgdMesher Solver Tota

15-16.5| 6.89 0.04 6.93 0.01 0.06 0.04132.34 0.05 132.3
14-159| 6.4 0.05 6.45 0.01 0.17 0.1§165.02 0.06 165.G
13-14.5| 10.23 0.06 10.290.02 0.16 0.1§164.93 0.06 164.9
8.5-9.5(| 21.57 0.08 21.6560.09 4.88 4.97189.19 0.09 189.7

7-8 || 17.62 0.46 18.08 0.13 45 45.13/263.39 0.19 263.5

00 00 © 00 ©

tration problem. For each case, the solver has been runntildhe error becomes
less than & (half the size of the voxel). Table 4 summarizes the results

We observe that the meshing time of PBM is extremely largaentman 2 min-
utes in all cases. Actually, most of this time is spent foritiigal BCC creation.
On the other hand, the CGAL+Tetgen scheme is very fast: iess2 seconds in all
cases, even for the bottom mesh which consists of 2,539 elsme

As far as the solver’s time is concerned, PBM yields the besthas. Overall,
however, the registration process is much slower than ther ohethods due to the
time consuming mesh generation time. For Tetgen, the ste&much time, when
the Hausdorff distance dropped belovs §see bold entries). As Table 2 shows, the
minimum dihedral angle for this fidelity is more thah, but the very low average
minimum dihedral angle (the lowest among all the methodsjnseto affect the
condition number a lot and consequently the speed of thesad\though the HQD
meshes have elements with very small angles, the averageumnangle is much
better than Tetgen (10 to 15 degrees larger). This is why whersolver ran on
HQD’s meshes, its execution time was less than 2 seconds ¢as#s, yielding a
good overall execution time, even when thealistance drops below.B.
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5 Conclusions

In this section, we summarize our findings. The two Delaunaghmes (i.e., HQD
and Tetgen) exhibit low quality when the fidelity increaseksstantially (when the
Hausdorff distance drops below 8 units approximately, inaase studies). As Ta-
ble 1 and Table 2 show, this quality deterioration yields gy Va&rge condition num-
ber which affects the execution time of the solver (see Tdhlé&\Ve also observe
that not only the minimum but also the average minimum diakangle plays an
importantrole to the solver’s speed. To see it, comparedivess speed of HQD to
the solver’s speed of Tetgen when the Hausdorff distanceeoffiteshes is between
7 and 8 units. When Tetgen’s mesh was used, the solver waeés slower. For
these values of fidelity, Tetgen meshes have better minimbeddal angles than
HQD meshes, but they also have much lower average minimueddihangles (15
degrees smaller), which is likely to be the reason for a mumtse/condition number
and the consequent large execution time of the solver.

The accuracy of the solver on the meshes produced by the tleaiDsy mesh-
ers does not fluctuate significantly by the different fideligfues (see Table 1 and
Table 2). That means that the need for good surface apprtigimdoes not seem
to affect the accuracy of the solver. Meshes approximaterg erudely the object
surface (see Figure 2(b) and Figure 3(b) for an illustrgtygelded an error less than
half the voxel size.

The main characteristic of the optimization-based mesher PBM) is the high
minimum and average dihedral angles, even in the case ofgarg fidelity. The
reason is because relatively dense initial BCCs can eagiiuce the object surface
without so much compression, thus preserving the good ainglhe BCC triangu-
lation. Of course, the number of elements increases signifi which makes the
mesh generation time extremely slow (see Table 4). We alserub that the solver
on PBM’s meshes exhibit the least error which in fact is addewhen fidelity is
very good (less than 5 units approximately). This is realendecause, as Table 3
suggests, good fidelity does not deteriorate the qualitywshras is the case for the
two Delaunay meshes. Notice, however, that even when the PB&hes have very
bad fidelity (see Figure 4(b)), the error does not increagafgiantly.
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