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Abstract In this paper, we assess the impact of mesh generation on Non-Rigid Reg-
istration of brain MR images. The solution accuracy and the speed of finite element
solvers depend on how well the underlying mesh approximatesthe surface of the
biological object (fidelity) and how well the elements of this mesh are shaped (qual-
ity). Fidelity and quality, however, are two contradictingrequirements, as increased
fidelity usually implies poor quality and vice versa.

In this paper, we evaluate three public mesh generators and examine how this
quality-fidelity trade-off affects the accuracy and the speed of non-rigid registration
solvers for brain images.

1 Introduction

In Computer Aided Surgery (CAS) and specifically in image guided neurosurgery,
Magnetic Resonance Images (MRI) obtained before the procedure (pre-operative)
provide extensive information which can help surgeons to plan a resection path.
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Careful planning is important to achieve the maximal removal of malignant tissue
from a patient’s brain, while incurring the minimal damage to healthy structures and
regions of the brain. However, current practices of neurosurgical resection involve
the opening of the scull and the dura. This results in a deformation of the brain
(known as the brain shift problem) which creates discrepancies between the pre-
operative imaging data and the reality during the operation. A correction is possible
using non-rigid registration (NRR) of intra-operative MRIwith pre-operative data.

In this paper, we target Finite Element (FE) based approaches for the non-rigid
registration [6]. These methods use real-time landmark tracking across the entire
image volume which makes the non-rigid registration more accurate but computa-
tionally expensive, as compared to similar methods that usesurface tracking [8].
The non-rigid registration problem should be solved fast enough, so that it can be
usable in clinical studies [2, 3].

Real-time Image-to-Mesh (I2M) conversion is a critical component of FE-based
non-rigid registration of brain images. Moreover, its solution in N dimensions (with
N ≥ 4) is important for handling geometric uncertainties caused by respiratory mo-
tion which complicates planning and treatment.

A mesh is characterized by itsfidelity andquality. Fidelity measures how well
the mesh boundary resembles the surface of the biological object. Quality assesses
the shape of mesh elements; the higher the minimum dihedral angle of the mesh
elements is, the higher the quality.

It is well known that the quality of the mesh affects both the accuracy and the
speed of the solver [14], because the angles of the elements influence the condition
number of the stiffness matrix. In the literature, a good deal of effort has been put
towards high-quality mesh generation [5, 9, 10, 16].

It is not clear, however, what the impact of fidelity on the accuracy and speed
of the solver is. The reason is because there is a complicatedtrade-off between
quality and fidelity. The need for a better surface approximation always implies a
deterioration of mesh quality, simply because well-shapedelements cannot fill the
space formed by sharp surface creases or by surface parts of high curvature. Also,
higher fidelity usually results in an increase of the number of mesh elements which
in turn affects both the mesher’s and the solver’s speed.

In this paper, we evaluated the impact of three public mesh generators [9, 11, 15]
on the accuracy and speed of NRR. The meshers were chosen carefully to cover
a wide range of mesh generation approaches. The Delaunay mesh algorithm in [9]
offers simultaneous meshing of the surface and the volume ofthe object. The algo-
rithm in [15] is Delaunay but requires the surface of the object as input. Finally, the
algorithm in [11] is an optimization-based technique whichcompresses an initial
body-centered cubic lattice (BCC) to the surface. (See Section 3 for more details.)
For each mesher, we conducted an extensive series of experiments controlling the
fidelity of the output mesh used for the subsequent NRR [6].

We concluded that meshes with very bad fidelity do not affect the accuracy dras-
tically. On the contrary, meshes with very good fidelity hurtthe speed of the mesher
due to the poor quality they exhibit. We also observed that the speed of the solver is
very sensitive to mesh quality rather than to fidelity. For these reasons, we think that
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Fig. 1 The non-rigid registration procedure.

mesh generation should first try to produce high quality meshes, possibly sacrificing
fidelity.

2 Registration

As our target application, we used the non-rigid registration method described by
Clatzet al. [6] which is shown to be robust enough to be usable to clinicalstudies.
Below, we outline the main aspects of this NRR method.

The method consists of three steps, namely,feature points selection, block match-
ing, andsystem solution. See Figure 1 for an illustration. During feature points selec-
tion, a sparse set of points is chosen from the pre-operativeimage. These points are
calledregistrationpoints. Then, the correspondence of these points into the intra-
operative image is found via a block matching scheme. Specifically, for a given reg-
istration pointr, a small window around it in the intra-operative image is searched;
the corresponding pointr ′ reported is the one that maximizes the correlation coeffi-
cient betweenr ′ andr.

Having computed the deformation vectorD on the registration points (as a result
of the block matching step), the deformation vector on the mesh verticesU (the
unknowns) is calculated so that the following energy is minimized:

W = (HU−D)⊤ (HU−D)
︸ ︷︷ ︸

Error energy

+ U⊤KU
︸ ︷︷ ︸

Mechanical energy

(1)
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In the above equation,K is the |U |× |U | mechanical stiffness matrix.H is the
linear interpolating matrix of size|D|× |U |; this matrix contains the measurements
of the linear shape functions on every registration point. The contributing shape
functions for each registration pointr i are those defined over the mesh nodes whose
forming mesh element includesr i .

The block matching deformationdi of a registration pointr i affects the deforma-
tion of a mesh nodev j , only if v j is incident upon a mesh elemente that contains
r j . In fact, if the minimization of the error energy (also knownas matching energy)
in Equation (1) was perfect (i.e., if it vanished), then the linear interpolation (of the
solution of the mesh nodes ofe) on r i would give the valuedi. As Clatz shows in [6]
(and as we can see from Equation (1)), this method tries to minimize this exact error
energyE:

E =

√

(HU−D)⊤ (HU−D) = ||HU−D|| (2)

which is the interpolation error on the registration pointsr1, r2, . . . , r|D|.
The mechanical energy in Equation (1) is used to model the deformation of the

brain as a physical body based on FEM. This, in turn, is used todiscover and discard
the outlier registration points, i.e., points whose deformation estimation from block
matching contradicts the physical properties of the brain.For information about the
construction of the mechanical stiffness matrixK, see Delingette and Ayache [7].

The deformation vectorU, over which energyW is minimized, is computed
through the following iterative equations:

F0 = 0 ,
(

K+H⊤H
)

Ui = H⊤D+Fi−1, i = 1,2, . . . ,

Fi = KUi , i = 1,2, . . .

In [6], it is proved that the system above converges. Also, observe thatK+H⊤H is
the matrix responsible for the robustness of NRR; its condition number affects both
the accuracy and the speed of the solution.

3 Mesh Generation

In this paper, we tested the influence of three meshers on NRR,namely,High Qual-
ity Delaunaymesher (HQD) [9],Tetgen[15], andPoint Based Matchingmesher
(PBM) [11]. Below, we briefly describe each of them.

HQD meshes both the surface and the volume of the object at thesame time with-
out an initial dense sampling of the object surface, as is thecase in other Delaunay
volume techniques [12, 13]. As a result, the number of elements of the output mesh
is small.

Tetgen is a Delaunay mesh generator as well. However, it assumes that the sur-
face of the object is already meshed and represented as a polyhedron. This polyhe-
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dron is also known as aPiecewise Linear Complex(PLC). Tetgen requires a PLC of
the object surface as its input. We used the algorithm in [4] for the PLC generation,
implemented in theComputational Geometry Algorithms Library(CGAL) [1].

PBM is an optimization-based approach. It starts with a triangulation of a regular
grid, i.e., a body-centered cubic lattice (BCC), and then itcompresses the outer
nodes closer to the object surface as a result of energy minimization. In fact, the
smaller the energy achieved, the better the fidelity of the output mesh. This method
is able to recover the surface of multi-tissue objects. In this paper, only the single-
tissue version of PBM is considered.

4 Evaluation

4.1 Methodology

As mentioned in Section 2, registration computes the deformation on the mesh
nodes, so that the error energyE= ||HU−D|| is minimized. Mesh generation affects
how accurately the error energy is minimized. Therefore, weassess the accuracy of
registration by keeping track of this errorE. For every run, we let the system iterate
for 10 times.

Observe, however, that the outcome of the registration depends on the accuracy
of the block matching step (vectorD). Also, notice that the mesh does not affect the
result of block matching (see Figure 1). Since we are interested in evaluating the im-
pact of mesh generation on registration, we wanted to make registration independent
of block matching. For this reason, we synthetically deformed the pre-operative im-
age according to the bio-mechanical properties of the brain. More specifically, we
initially ran the registration procedure to register the pre-operative with the intra-
operative image as shown in Figure 1, but that time we did not focus on the behav-
ior of the mesh. We just wanted the solution on the mesh nodes.Then, by (linearly)
interpolating the solution of the mesh nodes on any point of the image, we obtained
a synthetically deformed (intra-operative) image. After this initial registration, all
the other registrations (aiming at evaluating mesh generation) are performed be-
tween the pre-operative and the synthetically deformed image; that is, the real intra-
operative image is replaced by the deformed one. In this way,we achieve two things:

• we know the “true” deformation on any point, and therefore weknow the “true”
block matching result on any set of registration points, and

• we do not simulate an arbitrary deformation, but rather a realistic one, because
the deformed image was obtained taking into account the elasticity properties of
the brain through the stiffness matrixK of Equation 1.

For the initial registration procedure employed to synthetically deform the pre-
operative image, we set the parameters to the same values as described in [6] with
parameterλ assigned to 1.0. In this way, we obtained a set of 4,000 registration
points.
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Since we want to measure the influence of mesh generation, only the mesh
changes in every experiment. That is, for all the various meshes, the pre-operative
image and the set of registration points (together with their deformationD of course)
remain fixed. Note that for these subsequent registration procedures, we do not re-
ject registration points as potential outliers, simply because the synthetic deforma-
tion implies that there are no outliers (this is not the case for the initial registration).
For the same reason, we do not weight vectorD according to the confidence of the
registration points deformation. For all the experiments,parameterλ was set to 1.0.

4.2 Measuring and Varying Fidelity

As mentioned above, we wish to have control over the fidelity of the output mesh
produced by the different meshers. In this paper, we use thetwo-sided Hausdorff
distance Hto measure fidelity.

In our case, metricH is defined upon two finite setsA,B as follows:

H (A,B) = max{h(A,B) ,h(B,A)}, where

h(A,B) = max
a∈A

min
b∈B

||a−b||

The lower the value ofH (A,B), the more similar setsA,B are. In fact,H (A,B) is
equal to 0 if and only if setsA,B are identical.

Fidelity of a mesh is measured as the 2-sided Hausdorff distanceH of the fol-
lowing sets:

• setA: a densely sampled point set on the surface of the biologicalobject, and
• setB: a densely sampled point set on the boundary facets of the mesh.

Notice that the mesh boundary point setB does not consist of only boundary mesh
vertices. The reason is because otherwise, at least one sideof the Hausdorff distance
of the meshes produced by HQD would always be 0 (or very close to 0), since
this method guarantees that the boundary mesh vertices lie precisely on the object
surface.

Having defined fidelity, we proceed by explaining how we control fidelity for
each mesher.

For HQD, this is possible through the parameterδ (see [9] for a more detailed
explanation). Low values ofδ increase the sampling on the object surface which
yields better fidelity. High values ofδ produce meshes whose boundary crudely
approximates the real surface.

For Tetgen, we had to change the fidelity of the PLC given by CGAL. We, there-
fore, had to adjust two parameters responsible for the PLC’sfidelity. The first im-
poses an upper bound on the circumradius of theDelaunay ballsand the second
forces an upper bound on the distance between the circumcenter of the boundary
facets and the corresponding center of their Delaunay balls. More information can
be found in [4].
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Table 1 Meshes with varying fidelity obtained by HQD.

H Minimum Dihedral AngleAverage Minimum Dihedral Angle#Tetrahedra#VerticesCondition NumberError

22.81 8.68 39.92 40 23 35,205.00 0.40
20.22 5.86 35.73 52 27 37,988.00 0.36
19.94 2.73 30.99 96 41 93,179.00 0.47
17.92 4.10 31.81 89 38 62,404.00 0.52
17.52 5.46 33.74 61 30 31,352.00 0.49
16.57 4.10 31.39 77 34 24,984.00 0.32
16.15 6.17 31.83 148 61 99,449.00 0.30
15.28 7.70 37.53 168 71 40,350.00 0.27
13.49 4.08 33.39 297 113 46,260.00 0.40
9.86 2.46 34.05 228 89 26,399.00 0.38
9.23 3.61 36.15 425 157 51,487.00 0.25
9.09 6.01 35.95 578 200 37,427.00 0.26
8.72 2.36 33.63 385 137 53,977.00 0.28
8.47 4.07 36.10 771 261 292,370.00 0.21
7.11 1.27 36.18 1,157 367 319,850.00 0.27
6.24 0.34 35.71 1,681 521 594,820.00 0.24
5.84 0.92 35.93 2,746 814 1,559,500.00 0.25

For PBM, controlling fidelity is accomplished by adjusting the parameterλ . This
parameter defines the trade-off between quality and fidelity: high values ofλ make
the optimization more sensitive to good fidelity, while low values do not change
a lot the position of the initial (high-quality) BCC. However, we observed thatλ
does not offer a very flexible control over flexibility. Therefore, to get meshes of
substantially different fidelity, we had to change not onlyλ but also the density of
the initial BCC.

4.3 Results

Table 1 presents the results obtained by various meshes produced by HQD. Each row
corresponds to a singe mesh. ColumnH contains the Hausdorff distance between
the mesh and the object surface. The table illustrates meshes ordered in increas-
ing fidelity (i.e., in decreasing Hausdorff distance). It also shows the minimum and
the average minimum dihedral angle of the mesh, as well as thetotal number of
tetrahedra and vertices of the mesh. The condition number depicted is of the matrix
K+H⊤H which is responsible for the accuracy and speed of the NRR solver (see
Section 2). Finally, the last column reports the NRR error —as defined in Equa-
tion (2) —obtained after the end of the registration process.

We observe that the error does not fluctuate considerably. All the errors are about
less than half the size of a voxel (the size of the voxel is 1×1×1), even when theH
distance is very large. Figure 2 illustrates the meshes obtained by HQD for the best
and the worst fidelity.
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(a) H equal to 5.84 (best fidelity). (b) H equal to 22.81 (worst fidelity).

Fig. 2 Meshes produced by HQD.

Table 2 Meshes with varying fidelity obtained by Tetgen and CGAL.

H Minimum Dihedral AngleAverage Minimum Dihedral Angle#Tetrahedra#VerticesCondition NumberError

23.23 5.60 24.09 262 104 292,820.00 0.25
20.03 5.60 24.21 264 105 92,234.00 0.41
18.84 3.61 20.51 371 142 4,175,200.00 0.36
17.33 7.36 24.51 207 82 123,670.00 0.41
16.25 4.92 28.11 179 148 211,360.00 0.40
14.98 6.97 26.84 141 59 17,882.00 0.50
14.36 4.02 22.16 609 224 1,098,800.00 0.33
13.53 4.92 28.49 156 143 298,850.00 0.36
12.43 6.88 26.72 320 185 1,209,500.00 0.39
11.47 5.77 25.83 227 88 58,552.00 0.42
10.22 3.76 21.82 1,052 377 1,715,700.00 0.46
9.74 4.51 21.11 946 337 4,400,400.00 0.37
8.54 2.20 21.58 1,500 531 2,418,900.00 0.41
7.92 2.29 21.54 2,010 710 28,992,000.000.45
7.35 1.88 20.77 2,539 878 6,459,100.00 0.43
6.02 1.52 21.17 7,006 2424 1,941,500,000.00 n/a
5.88 1.33 20.65 4,547 1585 205,230,000.00 n/a

Table 2 shows the results for Tetgen. Similarly, fidelity does not seem to affect
the error considerably. Also, although the minimum dihedral angles are larger than
those in HQD, the average minimum dihedral angles are 10 to 15degrees less than
those in HQD. This results in generally higher error than theerror in HQD, but
still the differences in accuracy are not very obvious. However, the much larger
condition numbers affect the speed of the solver a lot. Actually, for the bottom two
runs (corresponding to the meshes with the two best fidelity values and with the two
higher condition numbers), the solver could not even converge. Figure 3 illustrates
the meshes obtained by Tetgen for the best and the worst fidelity.

Table 3 presents the results for the PBM mesh. We observe thatthe quality is
very good: the minimum and the average minimum dihedral angles reach perfection.
This results in much lower condition numbers and generally lower error than HQD
and Tetgen. Again, we observe that fidelity does not play thatimportant role in the
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(a) H equal to 5.88 (best fidelity).(b) H equal to 23.23 (worst fidelity).

Fig. 3 Meshes produced by Tetgen and CGAL.

Table 3 Meshes with varying fidelity obtained by PBM.

H Minimum Dihedral AngleAverage Minimum Dihedral Angle#Tetrahedra#VerticesCondition NumberError

21.02 60.00 60.00 465 139 122,470.00 0.19
19.56 60.00 60.00 1,144 303 203,230.00 0.53
18.30 60.00 60.00 2,126 519 223,540.00 0.50
15.39 41.21 54.43 465 139 19,711.00 0.17
14.25 35.54 54.48 1,144 303 23,405.00 0.35
13.94 31.68 53.83 1,144 303 21,213.00 0.29
13.58 19.41 53.09 1,144 303 18,980.00 0.27
12.61 39.27 53.81 465 139 16,897.00 0.18
12.02 35.77 53.55 465 139 15,978.00 0.19
10.39 34.13 54.78 2,126 519 29,397.00 0.17
9.88 31.92 54.22 2,126 519 25,926.00 0.17
9.39 30.04 53.63 2,126 519 23,485.00 0.17
7.01 59.99 60.00 18,780 3811 367,690.00 0.06
6.42 14.28 55.15 5,764 1277 21,300.00 0.15
5.25 35.61 56.83 18,780 3811 101,700.00 0.09
4.99 31.92 56.47 18,780 3811 78,449.00 0.09
4.94 27.50 56.13 18,780 3811 76,065.00 0.09

accuracy of the NRR. Even meshes with very bad fidelity yield an error less than
half the size of the voxel. Figure 4 illustrates the meshes obtained by PBM for the
best and the worst fidelity.

As you can see in the last two rows of Table 2 (where the error isn/a), the low av-
erage minimum dihedral angles seem to substantially affectthe speed of the solver:
in these two specific runs the solver did not even converge. Also, see that in these
two rows the condition number is extremely large. We wanted to look into the tim-
ings of both the meshers and the solver in more depth, and see what the merit of
fidelity to speed is.

We selected 5 meshes from each method of approximately the same fidelity re-
spectively and measured the time for meshing and the time forsolving the regis-
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(a) H equal to 4.94 (best fidelity). (b) H equal to 21.02 (worst fidelity).

Fig. 4 Meshes produced by PBM.

Table 4 Timings (in seconds) for various meshes obtained by different methods. Both the mesh
and the solver execution times are reported.

HQD Tetgen PBM
H Mesher Solver TotalMesher Solver TotalMesher Solver Total

15-16.5 6.89 0.04 6.93 0.01 0.06 0.07 132.34 0.05 132.39
14-15.5 6.4 0.05 6.45 0.01 0.17 0.18 165.02 0.06 165.08
13-14.5 10.23 0.06 10.29 0.02 0.16 0.18 164.93 0.06 164.99
8.5-9.5 21.57 0.08 21.65 0.09 4.88 4.97 189.19 0.09 189.28

7-8 17.62 0.46 18.08 0.13 45 45.13 263.39 0.19 263.58

tration problem. For each case, the solver has been running until the error becomes
less than 0.5 (half the size of the voxel). Table 4 summarizes the results.

We observe that the meshing time of PBM is extremely large: more than 2 min-
utes in all cases. Actually, most of this time is spent for theinitial BCC creation.
On the other hand, the CGAL+Tetgen scheme is very fast: less than 2 seconds in all
cases, even for the bottom mesh which consists of 2,539 elements.

As far as the solver’s time is concerned, PBM yields the best meshes. Overall,
however, the registration process is much slower than the other methods due to the
time consuming mesh generation time. For Tetgen, the solvertook much time, when
the Hausdorff distance dropped below 8.5 (see bold entries). As Table 2 shows, the
minimum dihedral angle for this fidelity is more than 1◦, but the very low average
minimum dihedral angle (the lowest among all the methods) seems to affect the
condition number a lot and consequently the speed of the solver. Although the HQD
meshes have elements with very small angles, the average minimum angle is much
better than Tetgen (10 to 15 degrees larger). This is why whenthe solver ran on
HQD’s meshes, its execution time was less than 2 seconds in all cases, yielding a
good overall execution time, even when theH distance drops below 8.5.
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5 Conclusions

In this section, we summarize our findings. The two Delaunay meshes (i.e., HQD
and Tetgen) exhibit low quality when the fidelity increases substantially (when the
Hausdorff distance drops below 8 units approximately, in our case studies). As Ta-
ble 1 and Table 2 show, this quality deterioration yields a very large condition num-
ber which affects the execution time of the solver (see Table4). We also observe
that not only the minimum but also the average minimum dihedral angle plays an
important role to the solver’s speed. To see it, compare the solver’s speed of HQD to
the solver’s speed of Tetgen when the Hausdorff distance of the meshes is between
7 and 8 units. When Tetgen’s mesh was used, the solver was 45 times slower. For
these values of fidelity, Tetgen meshes have better minimum dihedral angles than
HQD meshes, but they also have much lower average minimum dihedral angles (15
degrees smaller), which is likely to be the reason for a much worse condition number
and the consequent large execution time of the solver.

The accuracy of the solver on the meshes produced by the two Delaunay mesh-
ers does not fluctuate significantly by the different fidelityvalues (see Table 1 and
Table 2). That means that the need for good surface approximation does not seem
to affect the accuracy of the solver. Meshes approximating very crudely the object
surface (see Figure 2(b) and Figure 3(b) for an illustration) yielded an error less than
half the voxel size.

The main characteristic of the optimization-based mesher (i.e., PBM) is the high
minimum and average dihedral angles, even in the case of verygood fidelity. The
reason is because relatively dense initial BCCs can easily capture the object surface
without so much compression, thus preserving the good angles of the BCC triangu-
lation. Of course, the number of elements increases significantly, which makes the
mesh generation time extremely slow (see Table 4). We also observe that the solver
on PBM’s meshes exhibit the least error which in fact is achieved when fidelity is
very good (less than 5 units approximately). This is reasonable because, as Table 3
suggests, good fidelity does not deteriorate the quality as much as is the case for the
two Delaunay meshes. Notice, however, that even when the PBMmeshes have very
bad fidelity (see Figure 4(b)), the error does not increase significantly.
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