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Abstract—In this paper, we present a Delaunay refinement
algorithm for meshing 3D medical images. We prove that (a)
all the tetrahedra of the output mesh have radius-edge ratio
less than 2, (b) all the boundary facets have planar angles
larger than 30 degrees, (c) the symmetric (2-sided) Hausdffr
distance between the object surface and mesh boundary is
bounded from above by a user-specified parameter, and (d)
the mesh boundary is ambient isotopic to the object surface.
The first two guarantees assure that our algorithm removes
most of the poorly shaped elements, making the mesh suitable
for subsequent finite element analysis. The last two guaraees
assure that the mesh boundary is a good geometrical and
topological approximation of the object surface. Our long
term goal is to develop a real time image-to-mesh conversion
algorithm; towards that direction, our algorithm recovers the
object surface and meshes the interior volume at the same
time without sampling the object surface as a preprocessing
step, unlike other Delaunay meshing techniques. Experiméal
evaluation of our algorithm on real medical data corroborates
the theory.

Keywords-Delaunay mesh generation; medical images; qual-
ity; fidelity;

I. INTRODUCTION

algorithms offer quality and fidelity guarantees [3, 4] unde
the assumption that the surface of the object is smooth [3,
11] or does not form input angles less ttn [4]. However,

the quality achieved by these algorithms is somewhat weak:
the upper bound for the elements’ radius-edge ratio is targe
than4. On the contrary, the upper bound achieved by our
algorithm is2.

Moreover, Delaunay meshing algorithms, for example
those described in [3] and [11], often start with an initial
dense surface point set. The construction of such a set is a
non-trivial task (see Boissonnat et al. [12] for more dejail
that underpins the total speed of the mesher. We, on the other
hand, start with @ounding boXconsisting of eight points),
and then we proceed by meshing the interior volume and
by sampling the object surface at the same time as needed,
generating a surface point set in a simple, intuitive, arstl fa
way (see Section llI).

In the literature, there are also non-Delaunay surface and
volume meshing algorithms for 3D imagé&garching Cubes
is a very popular technique for surface meshing [13]; it
guarantees, however, neither good quality triangulart§ace

Delaunay meshing is a popular technique for generatingior good surface approximation. Among the non-Delaunay
tetrahedral meshes, since it is amenable to rigorous math&elume meshing techniques, we distinguish tRed-Green
matical analysis [1-5]; it has also been shown that Delaunajlesh(RGM) [14] and thelsosurface Stuffingnethod [15].

refinement behaves quite well in practice [6, 7].

Both of them start with dody-centered cubilattice (BCC)

In the literature, Delaunay refinement techniques havend therefore output a large number of elements. Also, RGM
been employed to mesh objects whose surface consists dbes not give any quality or fidelity guarantees.

piecewise linear features and is, actually, given [1, 2].98

Our algorithm guarantees that the radius-edge ratio of all

this paper, we deal with objects whose surface is a smooth utput tetrahedra is less th&n the boundary facets have

manifold and is not explicitly given (see Section Il); it Hset
algorithm’s responsibility to mesh the interior of the atije

planar angles more thad30°, the Hausdorff distance, both
from the mesh boundary to the object surface and from the

such that the mesh boundary describes the object surfa@dject surface to the mesh boundary, is bounded from above

well.

by a user-specified parameter, and that the mesh boundary

The quality of an element is measured in terms of itsis ambient isotopic to the object surface. The real surfdce o

circumradius-to-shortest-edgatio or radius-edgeratio for

the biological object is smooth, i.e., does not contain ghar

short. An upper bound for the radius-edge ratio of all theangles. To our knowledge, our algorithm is the first volume
elements in the output mesh would guarantee that all th®elaunay mesher for smooth objects achieving such a small
poorly-shaped elements are removed from the mesh excemdius-edge ratio with these fidelity guarantees.

for the so callecslivers Slivers can be removed by a post-

processing method, e.g., the perturbation [9] or the exodlat
method [8].

Another advantage of our algorithm is that it creates few
big elements in the interior of the object and more elements
on the surface where higher resolution is required.

Inspired by the popular Delaunay surface meshing al- In this paper, we focus on generating tetrahedral meshes
gorithms described in [10,11], Delaunay volume meshingor medical images. Such meshes are suitable for finite



element simulations involved in non-rigid registratior6fL Theorem 1 (Boissonnat et al. [12])If P is ane-sample of

18]. Our contribution can be summarized as follows: o9 with £ < 0.09, then:
« The elements of the resulting mesh are proved to have « Djsq (P) is a 2-manifold ambient isotopic td2 and
radius-edge ratio less than « the 2-sided Hausdorff distance betweBp, (P) and
« the boundary facets have angles larger thah o0 is O(£?).

« the mesh boundary is proved to be a good topologica,_emma 1 (Boissonnat et al. [12])If P is an e-sample of

and geometncal approximation of the object surface, 00 with e < 0.09, then every Voronoi edge of the Voronoi

« our algorithm meshes the volume and samples the,. .

. : . . . diagram of P intersectsof? at most once and transversally.
object surface at the same time, starting from an initial

set of8 points. We next define thesurface ballof a restricted facet:

The rest of this paper is organized as follows: Section lipgfinition 5 (Oudot et al. [3]) Suppose thaf is a restricted
provides the necessary definitions and Section Il outline$;cet ande is f’s dual Voronoi edge. Every poipte enos
our algorithm. Section IV proves the quality and Section Vg the center of an open balB containing no points of,

proves the fidelity guarantees. Finally, Section VI assssesng whose boundary sphere passes through the vertices of
the practical value of our work on both synthetic and realf_ The surface ball off is an arbitrary ball B.

medical data and Section VIl concludes our paper. _ _ o
A real pointp is called avertex if it has been already

Il. PRELIMINARIES inserted into the mesh. Aelementt is a tetrahedron, a

LetZ C R? be the (spatial) domain of a segmented image (triangular) facet, or an edge. Thitametral ball B(t) of
T is the input of our algorithm. We assume that the following? 1S the set of points that lie strictly insidés smallest
function f is available:f : 7 — {—1,1,0}, such that for ~circumscribing sphere. The smallest circumscribing spher
every pointp € Z, f(p) = 1 if p lies inside the object of an elementt will be sometimes galled itgliametral
Q C T to be meshedf(p) = —1 if p lies outside, and SPhereand denoted byS(¢). The radius and the center
f(p) = 0 if p lies on the surface of the object, denoted asOf ¢'s diametral ball/sphere are denoted bf¢) and c (t)
9Q. The existence of such a function is a quite reasonabl&espectively. Poinp is called afeaturepoint (or a feature
assumptiony can be constructed (or approximated from theVertex, ifp is inserted into the mesh), if it is a surface point,
image voxels quite well) for any segmented image. i.e., p € 952 The shortest edge of elements denoted by
As is generally the case in the literature [3, 11, 12], we alsdmin (¢). Finally, the radius-edge ratio of a tetrahedron or
assume thab( is a smooth 2-manifold without boundary. facett is denoted a (¢), i.e., p (t) = F=0k,.
Definition 1. The medial axis of is the closure of the set [Il. ALGORITHM
of those points having more than one closest poindtn Our algorithm initially creates a box that contains the

Definition 2. The local feature size of a point € 99, object Q'. such that_no point on the box is _closer than

denoted as If§p), is the distance fronp to the medial axis 2V/26 units to the .ObJeCt 5“”30@.“- Parametes is ghosen

of 9. by the user and it can be assigned to any positive value.

(It will be clear in Section V that the loweb is, the

We denote with Ifg,;, the minimum of the local feature better the mesh boundary will approxima€.) Next, the

sizes of all the points 0h2, that is: Ifs,;, = min{lfs (p) : Delaunay triangulation of this box8(vertices totally) is

p € 0Q2}. Note that ifo©2 does not contain sharp angles, thencomputed. This triangulation is the initial mesW where

Ifsmin is bounded from below by a real positive constant. the refinement starts from.

Definition 3 (Amenta et al. [11]) A point setP c 99 is During the refinement, some vertices are inserted exactly

called ans-sample o, if for every pointp € 9 there ~ O" the box; these vertices are calleak verticesThe edges
is a sample poing € P, éuch thatlp — g| < e - Ifs (p). that lie precisely on one of the 12 edges of the bounding box

are calledbox edgesWe further divide the box vertices into
Next, we define a speciadstriction two categoriesbox-edge verticeandnon-box-edge vertices

Definition 4 (Amenta et al. [11]) Let D (P) be the De- The former vertices lie precisely on a box edge, while the

launay triangulation of the point seP. The restriction of later do not. The facets that lie precisely on one of the

D (P) to 09, denoted asD|y, (P), contains the facets in fa_c_es of the box are cglledox facet_s For ex_ample, the
D (P) whose dual Voronoi edges intersei. initial mesh M contains jus® box vertices (which are also

box-edge vertices) ant2 box edges (among other edges).
We shall refer to a facet whose dual Voronoi edge inter-Note that the endpoints of a box edge are always box edge

sectsof? as arestrictedfacet. vertices, but the opposite is not always true. We shall tefer
In [12], the following useful theorem and lemma are the vertices that are neither box vertices nor feature cesti
proved: asfree vertices



Next, we define two types of tetrahedra:

« intersecting tetrahedraetrahedra whose circumsphere
intersect9)(2 (i.e., there is at least one feature point on
or inside their circumsphere), and F
« skinny tetrahedra non-intersecting tetrahedra whose
circumcenter lies (strictly) insidé2 and radius-edge
ratio is larger than or equal to a user-specified parameter
p.
Observe that a tetrahedron € M may be neither an
intersecting nor a skinny element or may be both.
The algorithm inserts new vertices for two reasons: to
guarantee that the mesh boundary is close to the object

(@) ¢ (f) encroaches upon a box edgeEdge
s's diametral sphere covers the part$ft) that
lies inside the box.

surface and to remove tetrahedra or facets with large radius S(t)
edge ratio. Specifically, let be a tetrahedron inM; the
following four rules are checked in this order. [0 oo 0)

o R1: If ¢t is an intersecting tetrahedron and the closest
feature point —say —to ¢ (¢) is at a distance not
closer thané to any other feature vertex, them is
inserted.

« R2:If tis an intersecting tetrahedron with radius larger
than or equal t@d, thenc (t) is inserted.

« R3:If tis adjacent to a restricted facgtwhose surface
ball has radius larger than or equaldpthen insert the
center of the surface ball.

o R4:If tis a skinny tetrahedron, then(t) is inserted.

Observe that R1 and R3 insert only feature vertices and that
R2 and R4 insert only free vertices.

Every time a steiner vertey, inserted into the mesh as Figure 1. The circumcenter(t) of a tetrahedrornt (not shown) does not
dictated by the four rules above, happens to be a featur@ inside the box. Its spher§(t) is empty of vertices due to the Delaunay
vertex, then all the non-feature vertices closer tRdnto ~ Propery.

p are deleted. Notice that no box vertices are deleted as a

result, since they are separated from the object surface by a

distance of at leasty/2¢§ units. Also, observe that no feature box, thenc (t) is rejected for insertion. Instead, we locally
vertices are deleted. Therefore, our algorithm deleteg onltraverse the triangulation and find an encroached box edge
free vertices so far. if one exists. If such a box edgeis found (see Figure 1(a)),

Whenever there is no tetrahedron for which R1, R2, R3then its diametral ballB(s) is emptied of free and non-
or R4 apply, the refinement process terminafiise final box-edge vertices and(s) is inserted. If there is no an
mesh reported is the set of tetrahedra whose circumcentegncroached box edge, thenc(t) must encroach upon a
lies insidef2. box facetf (see Figure 1(b)). In this case, the diametral ball

For reasons that will become obvious in Section IV, B(f) of f is emptied of free vertices and(f) is inserted.
no vertices should be inserted outside the bounding box. There might be the case, however, the circumcentg)
Notice, however, that vertices inserted due to R2 may lieof an encroached box facétlies outside the box. To prevent
outside the bounding box. To deal with such cases, outhe insertion of such vertices, we protect the box edges

(b) ¢ (f) does not encroach upon a box edge
but it encroaches upon a box fagetFacetf’s
diametral sphere covers the part 8ft) that
lies inside the box.

algorithm observes speciahcroachmentules similar to the
encroachment rules described in [1,5,19].

with their diametral spheres. Specifically, suppose that th
circumcentek (f) of an encroached box facet is considered

More precisely, assume that R2 is triggered for a tetrafor insertion. We check whether or nex(f) lies in a box
hedront and ¢ (t) lies outside or on the box. In this case, edges”’s diametral ballB(s’). If not, thenc (f) is inserted.

there will always exist a box edgeor a box facetf whose
diametral sphere covers the part$f) lying inside the box.
See Figure 1 for an illustration. We say thdt) encroaches
upons or f.

Every time the circumcentet (¢t) of an element: (for

Otherwise,c (f) is not inserted. In this case, we say that
¢ (f) encroaches upon. Every timec (f) encroaches upon

a box edges’, B(s') is emptied of free and non-box-edge
vertices and: (s') is inserted. Since after the insertion of any
box vertex, the diametral ball of any box edge will be empty

which R2 is activated) does not lie strictly inside the of box vertices, Lemma 1 of Shewchuk [19] assures us that



Proof: We will prove this lemma’s statement using
induction on the number of the vertices inserted.

Initially, only the 8 box vertices of the bounding box are
triangulated. Since any point on the box is not closer than
21/26 to any feature point, the initial edges are definitely
larger than2s (actually they are larger thay/25) and the
statement holds.

Assume that the statement holds after the insertion of the
(i — 1) vertex,i = 10,11, ... (induction hypothesis), and
Figure 2. For the sake of pontradiction, suppose that _theacer@f) of that theith vertex —sayv —is inserted. The lemma will be
o encroached bo fcets dametal sphere ) les ousie 850 % proved, if we show that the lemma's statement holds for the
f andc (f). Observe that’'s diametral spher&(s’) containsf’s vertices. ~ edges incident t@. \We separate cases.

But this is a contradiction: no box edge’s diametral sphergains another Assume thav is a feature vertex. Only R1 or R3 should
box vertex. have been responsible fois insertion. In this case; is no
closer thar/26 to any box vertex by construction. We also
claim thatv is not closer tha@ to any other feature vertex. If
R1 applies then our claim is obviously true. Suppose that R3
applies. Letf be the restricted facet. From Definition 5, the

whenever the circumcenter of an encroached box fadet
inserted, it will always lie on the box; see Figure 2 for an

explanation. - :
centerv of any surface balB of f is empty of vertices. But

In summary, suppose that the circumcentét) of an )
intersecting tetrahedronlies outside or on the box:(t) is 3 Says thai3 has radius at leastand therefore no vertex
|dS closer tov thané. Moreover, notice that the algorithm

not actually inserted into the mesh). The encroachmens rulé . A
are enumerated below in descending priority: deletes all the free vertices closer tHanto v which implies

that the feature vertex cannot be closer thanto any vertex
o E1: If ¢(t) encroaches upon a box edgethen B(s) y

. tied of f d b q " and the statement holds.
IS emplied of free and non-box-edge vertices anis) Now, assume that is a free vertex. Only R2 or R4 should
(i.e., the midpoint ofs) is inserted.

i have been responsible fois insertion. If R2 applies, then
* 52' I Cit) encroar(]:hes upor;) a box fa}[%ﬁta%d ¢ (f.) from the Delaunay property, is separated from any vertex
e:)nepstig((j) o?r]‘]rcezrga\l/certizggna%(;)xi:?fseertsg (f) is by a distance at least equal 26 > ¢. If R4 applies, then
‘ let ¢ be the ski tetrahedron. Sinpét) > p, t that
o E3: If ¢(t) encroaches upon a box facgt but ¢ (f) et be the skinny tetrahedron. Sinpét) = p. we get tha

! / the circumradius oft is at least|r(t)| > p|lmin (t)]; but
!
encroaches upon a box edge.thenB(s/) IS .emptled Imin (t) is an edge already in the mesh and by the induction
of free and non-box-edge vertices an@’) is inserted.

hypothesis is longer thafy yielding that|r(¢)| > pé. Since
Note that none of the encroachment rules deletes featurg s equal toc (¢), no edge incident te is closer thangd

vertices; the only vertices that might be deleted are free ofg 4, and the statement holds.

non-box-edge vertices. So far, we have not covered the casés a box vertex.
Let ¢ be the intersecting tetrahedron whose center lies on or
outside the box.

In this section, we prove that if the quality parameter is Assume that E1 applies. Lat be the encroached edge.
not less thanl, i.e., p > 1, then our algorithm terminates Recall thatv is the centerc(s) of s’s diametral ball. As
outputting tetrahedra with radius-edge ratio less thaand  we have already mentioned (see Figure 1(&))) covers
boundary facets with planar angles larger thE0? (see the part of S(¢) that lies inside the box. Thereforéy(s)
Theorem 2). contains a feature point, simply becauSé) contains a

Note that termination and quality are not compromised byfeature point due to R2. Hende(s)| is at leas2/26 by the
any positive value of. Parameted affects only the fidelity ~way the bounding box was constructed. Hence, after the free
guarantees (see Section V). Sagiywill deteriorate in the and non-box-edge vertices are removed fr@fs) (as E1
next section; the fidelity guarantees we give (see Section Viuggests)¢ (s) will not be closer thar2y/25 to any vertex
require thatp be not less than. and the statement holds.

Now, assume that E2 applies. L¢tbe the encroached
facet. Recall thatv is the centerc(f) of f's diametral
ball. As we have already mentioned (see Figure 1(®)Y,)
covers the part of5(¢) that lies inside the box. The same

IV. PROOF OFQUALITY

Lemma 2 (Shortest edge)Suppose thap > 1. Let v be
an inserted vertex and an edge incident te. One of the
following holds:

- if vis a feature vertex, thefe| > 9, reasoning as above yields tHatf)| is at leas2y/25 by the
o if v afree vertex, thefe| > pé, and way the bounding box was constructed. Also, note that since
« if v is a box vertex, thefe| > 24. f belongs to the triangulation3(f) does not contain any



Figure 3. The center (f) of the diametral ball of an encroached box facet
f (not shown) is considered for insertion, but it lies insitie diametral
sphereS(s’) of a box edges’. The smaller value thgs’| can take is when
c(f) lies onS(s’) and on the bisector of’ as shown. From the isosceles
right triangle and from the fact that(f) cannot be closer tha@y/25 to

N
any of s”’s endpoints, we get that;—| > 24; therefore, the midpoint (s)
of s’ cannot be closer tha®d to any vertex that lies outsidB(s’).

box vertices. Therefore, after the free vertices are remhove
from B(f) (as E2 suggests),(f) will not be closer than
21/26 to any vertex and the statement holds.

Lastly, assume that was inserted due to E3. Lat be
the box edge upon which(f) encroaches. Recall that
is the center (s’) of s”’s diametral ball. As proved in the
previous paragraph; (f) is not closer thar2y/26 to any
other box vertex. Since(f) lies in the diametral balB(s’)
of &, |r(s')| is at Ieast@ = 2§ (see Figure 3 for an
illustration). Therefore, after the deletion of the freedan
non-box-edge vertices from(s’), ¢ (s’) will not be closer
than2 to any other vertex, and the statement holds.m

introduced into the mesh will have length larger thamnd
therefore, termination is guaranteed.

Upon termination, the tetrahedra reported as part of the
mesh have circumcenters that lie insidend therefore they
cannot be skinny, because otherwise R4 would apply. This
implies that any mesh tetrahedron has radius-edge raso les
than p.

Since a boundary faceff is a restricted facet (by
Lemma 3), R3 guarantees that the radigg) of f's diame-
tral ball cannot be larger than or equaldtoFrom Lemma 2,
we also know that the shortest possible edge is at feasits
long. Thereforep (f) :#“(f) <7 0o _ <3 =1 ltis

min ()| 2 [lmin(f)] = &
well known that a faceff has radius-edge ratio less than

if and only if its smallest planar angle is larger th3of. =

V. PROOF OFFIDELITY

In this section, we further restrigt and derive an upper
bound for§, such that the boundary of the final mesh is
a provably good topological and geometrical approximation
of Q2. Our goal is to prove that the mesh boundary is equal
to Dsq (F) for E a0.09-sample ofd2 (see Theorem 3 of
this section). To see why this is enough, recall that from
Theorem 1, the restriction of @09-sample ofoS2 to 09 is
a good topological and geometrical approximatioro6¥.

Let V be the set of vertices appeared in the final mesh
and E' be equal toV N 99Q.

Lemma 4. Upon termination, for any poinp € 092, there
is a vertexv € E, such thatjp — v| < 54.

Proof: Recall that upon termination, there is no tetra-
hedron for which R1, R2, R3, or R4 apply.

The next Lemma shows that the boundary facets of the L€t p be an arbitrary point o@2. Pointp has to lie on

output mesh are in fact restricted facets.

Lemma 3. Let V' be the set of vertices of the output mesh
M. The set of the boundary facets is a subseDgf, (V).

Proof: Recall that the tetrahedra reported as part o
the mesh have circumcenters that lie inside the olject
Therefore, a faceff is a facet of the mesh boundary if it
is incident upon a tetrahedran whose circumcenter lies
inside {2 and upon a tetrahedrar whose circumcenter lies
outside(2 or on its surfacé(2. But this means that the dual
Voronoi edge off intersectsof?, and thereforef belongs
to 'D|QQ (V). | |

Theorem 2. If p > 1, then the algorithm terminates. Also,
all the mesh tetrahedra have radius-edge ratio less tphan

or inside the circumsphere of a tetrahedtohlence/ is an
intersecting tetrahedron. Suppose that ppins the feature
point closest ta: (t). Note that/c (t) — p| > |¢(t) — p’| and
thereforep’ does not lie outsidé’s circumsphere. There

1must exist a feature vertex closer thand to p’, since

otherwise R1 would apply fot. We also know thatt's
circumradius has to be less th&a, since otherwise R2
would apply fort. From the triangle inequality, we get that
lp—v| <|p" —v[+[p" —pl < [P —v|+2[r(t)| <+46 =
50. ]

From Lemma 4 and Definition 3, the following corollary
follows:

Corollary 1. If 6 < 22 . Ifs
of 99.

then E is a 0.09-sample

min’

and all the boundary facets have planar angles larger than Corollary 1 implies it is enough to prove that the mesh

30°.

Proof: Note that we never insert vertices outside the

boundary is equal t®)5q, (E), with E being equal tol” N
o0

bounding box which means that the algorithm inserts verLemma 5. If p > 2, then any facelf € D)y, (V) has its
tices inside a finite volume. Lemma 2 suggests that any edgeertices onof2.
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Proof: Suppose thaff has a vertex» which does not RN VAN
. . : - N
lie on 99, i.e.,v is not a feature vertex. From Lemma 2, we
get that all the edges incident toare longer than or equal
to 26. Hence, the radius of any sphere circumscribjnigas
to be at least which raises a contradiction: the diametral
ball of any restricted facef has radius less thah due to
R3. [ |

The following Theorem proves the fidelity guarantees

achieved by our algorithm: Figure 4. The isosurface and a cross section of a sphere thesheur
B algorithm. The surface consists @50 triangles whose planar angles are
Theorem 3. If § < 0.09 - Ifs;, and p > 2, then the mesh  |arger thar30°. The whole mesh consists d285 tetrahedra whose radius-

boundary is a 2-manifold ambient isotopic &) and the edge ratio is less tha2. The refinement process lasted fbseconds.
2-sided Hausdorff distance between the mesh boundary and

o0 is O(52).
(9%) CGAL offers flexible data structures for Delaunay point

Proof: By Theorem 1, it is enough to prove that the insertions and removals. For the 3D visualization of thel fina
mesh boundary is the restriction &2 of a 0.09-sample of  mesh, we used th¥isualization Toolkit(VTK) [22]; after
9§2. We will, in fact, show that the mesh boundary is equalthe termination of the mesher, we write the output mesh in
to Djsq (E) which is the restriction @2 of a 0.09-sample  a VTK file format which is read by Paraview [23], an open

of 99, b_y C_orollary 1. source visualization application.
We will first show thatD|s (V) C Djaq (E). Let f This section is divided into two parts. Subsection VI-A
belong toD|s, (V). Lemma 5 implies thaff’s vertices lie  illustrates how our algorithm (described in Section III)

on 09 Also, any surface balB of f does not contain any behaves in practice, while Subsection VI-B shows how a

vertex of V, by Definition 5. ThereforeB does not contain  small modification of our algorithm yields a mesh consisting

any vertex ofE, sinceE is a subset of/. But that means of tetrahedra with dihedral angles larger thi)?.

that f is contained inDsq, (£) as well. e
We next prove that that the mesh boundary is equal téo" Theory verification

Djpa (V). We have already proved in Lemma 3 that the For all the experiments of this subsection, we séb 2,

mesh boundary is a subset @y, (V). For the other and therefore (from Theorem 2) all the output tetrahedra are

direction, let f belong to Dja (V). Observe that since guaranteed to have radius-edge ratio less thand all the

Dypq (C) Djaq (E), Lemma 1 suggests that the dual Voronoi boundary facets are guaranteed to have planar angles larger

edge of f intersectsd exactly once and transversally. than30°. Recall that quality is not affected by any value of

Hence, there are two tetrahedraand¢; sharing facetf, 0.

such that one tetrahedron has its circumcenter inQidand Although the fidelity guarantees we give hold for a very
the other has its circumcenter outside or @n But that small value ofé (see Theorem 3), we wanted to see if our
means thatf is also a member of the mesh boundary. algorithm works well for much larger values 6f A larger

Now, the only fact we need to prove is trBfyq (E) is value of § also implies that the size of the output mesh is
a subset 0Dj5q (V), since that would imply thab) g, (E) smaller. Small-size meshes are desirable for two reaset: fir
is equal toD|sq (V). But this is, in essence, proved in because the mesh generation execution time is considerably
Lemma 4.5 of Oudot et al. [3], and the desired result follows|ess and second, because finite element simulations [24, 25]
m onthem run faster. We observed that even though the fidelity
guarantees proved in Section V do not hold for lafg¢he
V1. EXPERIMENTAL EVALUATION results in fact are pretty good. A study of the impact an
the accuracy of non-rigid registration will appear elsexehe

This section presents the final meshes generated by OUN\e first tested our algorithm on synthetic data. We chose
algorithm on synthetic and real medical data. All the experiy mesh a sphere, because we know how the output mesh

iments were conducted on a 64 bit machine equipped with 8hould look like. Paramet@ris set to a valus0 times larger

2.5 GHz Intel Core 2 Duo CPU and 4 GB of main MEMOTY.than the value Theorem 3 suggests. Figure 4 shows the mesh

_ We used thelnsight Toolkit (ITK) for image process- generated by our algorithm. The refinement process lasted
ing [20]. ITK provides, among others, the implicit function for 4 seconds

f that describes the objefX to be meshed (see Section Il). We next tested our algorithm on a real human brain image

More precisely, given a real poini, f can tell whether hiaineq from Huashan HospitalThis 3D image has been

the voxel to whichp belongs is inside, outs_|de, or exactly acquired by aMlagnetic Resonance ImagiryIRl) scanner.
on ). The actual mesh generator was built on top of the

Computational Geometry Algorithms Libra(CGAL) [21]. 1Huashan Hospital, 12 Wulumugi Zhong Lu, Shanghai, China.
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Figure 6. Two views of the isosurface and a cross section efriterior

of the brain generated by our algorithm. The isosurfacéf itsensists of

12,340 triangles. All these (boundary) triangles have aalaangles larger
than30°. The total number of tetrahedra is only 27,333. All the teddra

Figure 5. (Top row) Two views of the isosurface (generated by Paraview) have radius-edge ratio less thanThe refinement took 53 seconds.

of the brain we used in our experimen{®ottom row) The boundary
triangles (of the isosurfaces of the top row) are shown. Husurface
itself consists of 90,742 triangles.

The segmented MR brain has been already stored in ITK
format. This (input) image consists 86 x 316 x 168 voxels.
The size of each voxel i8.9375 x 0.9375 x 1.5 mmn.

Meshing a brain is a quite challenging task, since it is a
complex geometry. We compare the fidelity of our mesh with
that obtained by the isosurface contour filter of Paraview.
This filter uses a Marching Cubes [13] variation. Figure 5
shows how Paraview extracted the isosurface of the brain;
observe that some parts are of high curvature.

Figure 675hOWS the output of our algorithm. The quality Figure 7. (a) The final mesh reported by our algorithm. The quality
parametep has been set t9, and4 has been set t8mM.  parameters has been set ta and s to 6mm. The mesh consists G539

Observe the grading from the boundary towards the interiottetrahedra an@856 boundary facets. All the tetrahedra have radius-edge
ratio less thar2 and the boundary facets have planar angles larger than

The refinement process took 53 seconds. > . : ,

. 30°, as it is proved. The refinement process terminatetiiseconds(b)
. Figure 7 shows the O_UtPUt mesh gengrated by our algorhe drawn edges are the edges of the boundary facets of otr shewn
rithm for the same brain image, but with an even largerat the left. The gray surface is the “true” surface (showmalim Figure 5).

0 (i.e., 6mm). We also overlaid the output mesh on the

isosurface obtained by Paraview (shown in Figure 5) which
we trust as an “acceptable” approximation. Observe that thereferred to aslivers may have very small dihedral angles.
Figure 8 presents the histogram of the dihedral angles of the

are still very close to each other.
) mesh shown in Figure 7(a). Every bar has a width2of
B. Sliver removal The height of every bar represents the number of tetrahedra

Although our algorithm guarantees that all the mesh tetrawhose smallest dihedral angle falls into the range of the bar
hedra will have a small radius-edge ratio, some tetrahedrd&he histogram shows that few tetrahedra with very small

@ (b)
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Figure 9. The final mesh and a cross section generated by odifiedo
algorithm with o equal t010°. Parametep is set to the same value with
55 100 300 2300 200 =00 pres o0 the value we used for the mesh shown in Figure 7(a). The mewsists of
Degrees of smallest dihedral angle 6491 tetrahedra an@936 boundary facets. All the tetrahedra have dihedral
angles larger thari0° and the boundary facets have planar angles larger
than 30°. The refinement process terminated1 seconds.

50 -

Figure 8. The distribution of the dihedral angles of the mekbwn
in Figure 7(a). Although the majority of the output tetrateedhave good
angles, there are a few with dihedral angles less ftfan

dihedral angles may survive. £ 400 i 8
It would be interesting to see how our algorithm would % 350 ST A 8
perform if we split tetrahedra with small dihedral angles B o T 1
rather than splitting tetrahedra with large radius-edd®.ra 5 250" 8
We, therefore, replaced rule R4 (the rule that splits teirah g 2000 8
with large radius-edge ratio) of our original algorithm Rwit E 150 .
the following rule: Z 100 i
« R4': If the circumcenterc (t) of a tetrahedrort lies sor ' 1
inside the object) and its smallest dihedral angle is % 10° 20° 30 0 50° 600 700
less tham degrees, then (t) is inserted. Degrees of smallest dihedral angle

Parametetr is controlled by the user. When the algorithm Figure 10. The distribution of the dihedral angles of the Imsisown in
terminates, all the dihedral angles of the output mesh wilf79ure 9 All the dihedral angles are larger the?.
be larger thany degrees. Figure 9 shows the output mesh of
our modified algorithm with parameter being set tol10°.
Although we offer no guarantees in this case, the final mesh
describes fairly well the object surfac#) and does not ~ An issue we do not completely address in this paper is
contain any slivers: all the output tetrahedra have diHedrathe elimination of slivers. In fact, we observed that eletaen
angles larger than0°. We also plot the histogram of the with dihedral angles less th&i may survive (see Figure 8).

dihedral angles in this case; see Figure 10. As mentioned in the Introduction, slivers can be elimi-
nated using techniques well described in the literature [8,
VII. CONCLUSIONS ANDFUTURE WORK 9]. Although we leavesliver eliminationas future work,

We have implemented a 3D Delaunay refinement al_preliminary results (see Subsection VI-B) have shown that
gorithm which guarantees that the output tetrahedra havin practice, if we just split slivers at their circumcentéren

radius-edge ratio less thahand the boundary facets have ﬁ‘]g algorithm terminates generating.a mesh that describes
o fairly well the object surface (see Figure 9) and does not

planar angles larger tha0° (see Theorem 2). We also prove contain any slivers (see Figure 10)

that if ¢ is sufficiently small, then the mesh boundary is a '

2-manifold ambient isotopic to the object surface and the As shown in Subsection VI-A, our algorithm generates

2-sided Hausdorff distance between the mesh boundary arfdwer elements as we travel away from the object surface.

the object surface i©(52) (see Theorem 3). We would also like to achieve good grading along the object
Experimental evaluation of our algorithm on real medicalsurface, that is, fewer boundary facets on the parts of the

data (see Subsection VI-A) confirmed the theory and alsgurface far from the medial axis. The fully-graded version

showed that we can generate quite coarse meshes very fast.our algorithm is left as future work.
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