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Abstract—In this paper, we present a Delaunay refinement
algorithm for meshing 3D medical images. We prove that (a)
all the tetrahedra of the output mesh have radius-edge ratio
less than 2, (b) all the boundary facets have planar angles
larger than 30 degrees, (c) the symmetric (2-sided) Hausdorff
distance between the object surface and mesh boundary is
bounded from above by a user-specified parameter, and (d)
the mesh boundary is ambient isotopic to the object surface.
The first two guarantees assure that our algorithm removes
most of the poorly shaped elements, making the mesh suitable
for subsequent finite element analysis. The last two guarantees
assure that the mesh boundary is a good geometrical and
topological approximation of the object surface. Our long
term goal is to develop a real time image-to-mesh conversion
algorithm; towards that direction, our algorithm recovers the
object surface and meshes the interior volume at the same
time without sampling the object surface as a preprocessing
step, unlike other Delaunay meshing techniques. Experimental
evaluation of our algorithm on real medical data corroborates
the theory.

Keywords-Delaunay mesh generation; medical images; qual-
ity; fidelity;

I. I NTRODUCTION

Delaunay meshing is a popular technique for generating
tetrahedral meshes, since it is amenable to rigorous mathe-
matical analysis [1–5]; it has also been shown that Delaunay
refinement behaves quite well in practice [6, 7].

In the literature, Delaunay refinement techniques have
been employed to mesh objects whose surface consists of
piecewise linear features and is, actually, given [1, 2, 5, 8]. In
this paper, we deal with objects whose surface is a smooth 2-
manifold and is not explicitly given (see Section II); it is the
algorithm’s responsibility to mesh the interior of the object
such that the mesh boundary describes the object surface
well.

The quality of an element is measured in terms of its
circumradius-to-shortest-edgeratio or radius-edgeratio for
short. An upper bound for the radius-edge ratio of all the
elements in the output mesh would guarantee that all the
poorly-shaped elements are removed from the mesh except
for the so calledslivers. Slivers can be removed by a post-
processing method, e.g., the perturbation [9] or the exudation
method [8].

Inspired by the popular Delaunay surface meshing al-
gorithms described in [10, 11], Delaunay volume meshing

algorithms offer quality and fidelity guarantees [3, 4] under
the assumption that the surface of the object is smooth [3,
11] or does not form input angles less than90◦ [4]. However,
the quality achieved by these algorithms is somewhat weak:
the upper bound for the elements’ radius-edge ratio is larger
than 4. On the contrary, the upper bound achieved by our
algorithm is2.

Moreover, Delaunay meshing algorithms, for example
those described in [3] and [11], often start with an initial
dense surface point set. The construction of such a set is a
non-trivial task (see Boissonnat et al. [12] for more details)
that underpins the total speed of the mesher. We, on the other
hand, start with abounding box(consisting of eight points),
and then we proceed by meshing the interior volume and
by sampling the object surface at the same time as needed,
generating a surface point set in a simple, intuitive, and fast
way (see Section III).

In the literature, there are also non-Delaunay surface and
volume meshing algorithms for 3D images.Marching Cubes
is a very popular technique for surface meshing [13]; it
guarantees, however, neither good quality triangular facets
nor good surface approximation. Among the non-Delaunay
volume meshing techniques, we distinguish theRed-Green
Mesh(RGM) [14] and theIsosurface Stuffingmethod [15].
Both of them start with abody-centered cubiclattice (BCC)
and therefore output a large number of elements. Also, RGM
does not give any quality or fidelity guarantees.

Our algorithm guarantees that the radius-edge ratio of all
output tetrahedra is less than2, the boundary facets have
planar angles more than30◦, the Hausdorff distance, both
from the mesh boundary to the object surface and from the
object surface to the mesh boundary, is bounded from above
by a user-specified parameter, and that the mesh boundary
is ambient isotopic to the object surface. The real surface of
the biological object is smooth, i.e., does not contain sharp
angles. To our knowledge, our algorithm is the first volume
Delaunay mesher for smooth objects achieving such a small
radius-edge ratio with these fidelity guarantees.

Another advantage of our algorithm is that it creates few
big elements in the interior of the object and more elements
on the surface where higher resolution is required.

In this paper, we focus on generating tetrahedral meshes
for medical images. Such meshes are suitable for finite



element simulations involved in non-rigid registration [16–
18]. Our contribution can be summarized as follows:

• The elements of the resulting mesh are proved to have
radius-edge ratio less than2,

• the boundary facets have angles larger than30◦,
• the mesh boundary is proved to be a good topological

and geometrical approximation of the object surface,
• our algorithm meshes the volume and samples the

object surface at the same time, starting from an initial
set of8 points.

The rest of this paper is organized as follows: Section II
provides the necessary definitions and Section III outlines
our algorithm. Section IV proves the quality and Section V
proves the fidelity guarantees. Finally, Section VI assesses
the practical value of our work on both synthetic and real
medical data and Section VII concludes our paper.

II. PRELIMINARIES

Let I ⊆ R3 be the (spatial) domain of a segmented image.
I is the input of our algorithm. We assume that the following
function f is available:f : I → {−1, 1, 0}, such that for
every pointp ∈ I, f(p) = 1 if p lies inside the object
Ω ⊆ I to be meshed,f(p) = −1 if p lies outside, and
f(p) = 0 if p lies on the surface of the object, denoted as
∂Ω. The existence of such a function is a quite reasonable
assumption:f can be constructed (or approximated from the
image voxels quite well) for any segmented image.

As is generally the case in the literature [3, 11, 12], we also
assume that∂Ω is a smooth 2-manifold without boundary.

Definition 1. The medial axis of∂Ω is the closure of the set
of those points having more than one closest point on∂Ω.

Definition 2. The local feature size of a pointp ∈ ∂Ω,
denoted as lfs(p), is the distance fromp to the medial axis
of ∂Ω.

We denote with lfsmin the minimum of the local feature
sizes of all the points on∂Ω, that is: lfsmin = min{lfs (p) :
p ∈ ∂Ω}. Note that if∂Ω does not contain sharp angles, then
lfsmin is bounded from below by a real positive constant.

Definition 3 (Amenta et al. [11]). A point setP ⊂ ∂Ω is
called anε-sample of∂Ω, if for every pointp ∈ ∂Ω there
is a sample pointq ∈ P , such that|p − q| ≤ ε · lfs(p).

Next, we define a specialrestriction:

Definition 4 (Amenta et al. [11]). Let D (P ) be the De-
launay triangulation of the point setP . The restriction of
D (P ) to ∂Ω, denoted asD|∂Ω (P ), contains the facets in
D (P ) whose dual Voronoi edges intersect∂Ω.

We shall refer to a facet whose dual Voronoi edge inter-
sects∂Ω as arestricted facet.

In [12], the following useful theorem and lemma are
proved:

Theorem 1 (Boissonnat et al. [12]). If P is an ε-sample of
∂Ω with ε < 0.09, then:

• D|∂Ω (P ) is a 2-manifold ambient isotopic to∂Ω and
• the 2-sided Hausdorff distance betweenD|∂Ω (P ) and

∂Ω is O(ε2).

Lemma 1 (Boissonnat et al. [12]). If P is an ε-sample of
∂Ω with ε < 0.09, then every Voronoi edge of the Voronoi
diagram ofP intersects∂Ω at most once and transversally.

We next define thesurface ballof a restricted facet:

Definition 5 (Oudot et al. [3]). Suppose thatf is a restricted
facet ande is f ’s dual Voronoi edge. Every pointp ∈ e∩∂Ω
is the center of an open ballB containing no points ofP ,
and whose boundary sphere passes through the vertices of
f . The surface ball off is an arbitrary ball B.

A real point p is called avertex, if it has been already
inserted into the mesh. Anelementt is a tetrahedron, a
(triangular) facet, or an edge. Thediametral ball B(t) of
t is the set of points that lie strictly insidet’s smallest
circumscribing sphere. The smallest circumscribing sphere
of an elementt will be sometimes called itsdiametral
sphere and denoted byS(t). The radius and the center
of t’s diametral ball/sphere are denoted byr(t) and c (t)
respectively. Pointp is called afeaturepoint (or a feature
vertex, if p is inserted into the mesh), if it is a surface point,
i.e., p ∈ ∂Ω. The shortest edge of elementt is denoted by
lmin (t). Finally, the radius-edge ratio of a tetrahedron or
facet t is denoted asρ (t), i.e., ρ (t) = |r(t)|

|lmin(t)| .

III. A LGORITHM

Our algorithm initially creates a box that contains the
object Ω, such that no point on the box is closer than
2
√

2δ units to the object surface∂Ω. Parameterδ is chosen
by the user and it can be assigned to any positive value.
(It will be clear in Section V that the lowerδ is, the
better the mesh boundary will approximate∂Ω.) Next, the
Delaunay triangulation of this box (8 vertices totally) is
computed. This triangulation is the initial meshM where
the refinement starts from.

During the refinement, some vertices are inserted exactly
on the box; these vertices are calledbox vertices. The edges
that lie precisely on one of the 12 edges of the bounding box
are calledbox edges. We further divide the box vertices into
two categories:box-edge verticesandnon-box-edge vertices.
The former vertices lie precisely on a box edge, while the
later do not. The facets that lie precisely on one of the6
faces of the box are calledbox facets. For example, the
initial meshM contains just8 box vertices (which are also
box-edge vertices) and12 box edges (among other edges).
Note that the endpoints of a box edge are always box edge
vertices, but the opposite is not always true. We shall referto
the vertices that are neither box vertices nor feature vertices
as free vertices.
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Next, we define two types of tetrahedra:

• intersecting tetrahedra: tetrahedra whose circumsphere
intersects∂Ω (i.e., there is at least one feature point on
or inside their circumsphere), and

• skinny tetrahedra: non-intersecting tetrahedra whose
circumcenter lies (strictly) insideΩ and radius-edge
ratio is larger than or equal to a user-specified parameter
ρ̄.

Observe that a tetrahedront ∈ M may be neither an
intersecting nor a skinny element or may be both.

The algorithm inserts new vertices for two reasons: to
guarantee that the mesh boundary is close to the object
surface and to remove tetrahedra or facets with large radius-
edge ratio. Specifically, lett be a tetrahedron inM; the
following four rules are checked in this order:

• R1: If t is an intersecting tetrahedron and the closest
feature point —sayp —to c (t) is at a distance not
closer thanδ to any other feature vertex, thenp is
inserted.

• R2: If t is an intersecting tetrahedron with radius larger
than or equal to2δ, thenc (t) is inserted.

• R3: If t is adjacent to a restricted facetf whose surface
ball has radius larger than or equal toδ, then insert the
center of the surface ball.

• R4: If t is a skinny tetrahedron, thenc (t) is inserted.

Observe that R1 and R3 insert only feature vertices and that
R2 and R4 insert only free vertices.

Every time a steiner vertexp, inserted into the mesh as
dictated by the four rules above, happens to be a feature
vertex, then all the non-feature vertices closer than2δ to
p are deleted. Notice that no box vertices are deleted as a
result, since they are separated from the object surface by a
distance of at least2

√
2δ units. Also, observe that no feature

vertices are deleted. Therefore, our algorithm deletes only
free vertices so far.

Whenever there is no tetrahedron for which R1, R2, R3,
or R4 apply, the refinement process terminates.The final
mesh reported is the set of tetrahedra whose circumcenter
lies insideΩ.

For reasons that will become obvious in Section IV,
no vertices should be inserted outside the bounding box.
Notice, however, that vertices inserted due to R2 may lie
outside the bounding box. To deal with such cases, our
algorithm observes specialencroachmentrules similar to the
encroachment rules described in [1, 5, 19].

More precisely, assume that R2 is triggered for a tetra-
hedront and c (t) lies outside or on the box. In this case,
there will always exist a box edges or a box facetf whose
diametral sphere covers the part ofS(t) lying inside the box.
See Figure 1 for an illustration. We say thatc (t) encroaches
upons or f .

Every time the circumcenterc (t) of an elementt (for
which R2 is activated) does not lie strictly inside the

S(t)

c (t)
s

F

(a) c (f) encroaches upon a box edges. Edge
s’s diametral sphere covers the part ofS(t) that
lies inside the box.

S(t)

c (t)

f
F

(b) c (f) does not encroach upon a box edge
but it encroaches upon a box facetf . Facetf ’s
diametral sphere covers the part ofS(t) that
lies inside the box.

Figure 1. The circumcenterc (t) of a tetrahedront (not shown) does not
lie inside the box. Its sphereS(t) is empty of vertices due to the Delaunay
property.

box, thenc (t) is rejected for insertion. Instead, we locally
traverse the triangulation and find an encroached box edges,
if one exists. If such a box edges is found (see Figure 1(a)),
then its diametral ballB(s) is emptied of free and non-
box-edge vertices andc (s) is inserted. If there is no an
encroached box edges, then c (t) must encroach upon a
box facetf (see Figure 1(b)). In this case, the diametral ball
B(f) of f is emptied of free vertices andc (f) is inserted.

There might be the case, however, the circumcenterc (f)
of an encroached box facetf lies outside the box. To prevent
the insertion of such vertices, we protect the box edges
with their diametral spheres. Specifically, suppose that the
circumcenterc (f) of an encroached box facet is considered
for insertion. We check whether or norc (f) lies in a box
edges′’s diametral ballB(s′). If not, thenc (f) is inserted.
Otherwise,c (f) is not inserted. In this case, we say that
c (f) encroaches upons. Every timec (f) encroaches upon
a box edges′, B(s′) is emptied of free and non-box-edge
vertices andc (s′) is inserted. Since after the insertion of any
box vertex, the diametral ball of any box edge will be empty
of box vertices, Lemma 1 of Shewchuk [19] assures us that
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replacements

s′F

fv S(f)

S(s′)

c (f)

Figure 2. For the sake of contradiction, suppose that the center c (f) of
an encroached box facetf ’s diametral sphereS(f) lies outside the box, as
illustrated. There should be a box edges′ that lies between the interior of
f andc (f). Observe thats′’s diametral sphereS(s′) containsf ’s vertices.
But this is a contradiction: no box edge’s diametral sphere contains another
box vertex.

whenever the circumcenter of an encroached box facetf is
inserted, it will always lie on the box; see Figure 2 for an
explanation.

In summary, suppose that the circumcenterc (t) of an
intersecting tetrahedront lies outside or on the box (c (t) is
not actually inserted into the mesh). The encroachment rules
are enumerated below in descending priority:

• E1: If c (t) encroaches upon a box edges, thenB(s)
is emptied of free and non-box-edge vertices andc (s)
(i.e., the midpoint ofs) is inserted.

• E2: If c (t) encroaches upon a box facetf and c (f)
does not encroach upon a box edges′, then B(f) is
emptied of free vertices andc (f) is inserted.

• E3: If c (t) encroaches upon a box facetf , but c (f)
encroaches upon a box edges′, thenB(s′) is emptied
of free and non-box-edge vertices andc (s′) is inserted.

Note that none of the encroachment rules deletes feature
vertices; the only vertices that might be deleted are free or
non-box-edge vertices.

IV. PROOF OFQUALITY

In this section, we prove that if the quality parameter is
not less than1, i.e., ρ̄ ≥ 1, then our algorithm terminates
outputting tetrahedra with radius-edge ratio less thanρ̄ and
boundary facets with planar angles larger than30◦ (see
Theorem 2).

Note that termination and quality are not compromised by
any positive value ofδ. Parameterδ affects only the fidelity
guarantees (see Section V). Sadly,ρ̄ will deteriorate in the
next section; the fidelity guarantees we give (see Section V)
require thatρ̄ be not less than2.

Lemma 2 (Shortest edge). Suppose that̄ρ ≥ 1. Let v be
an inserted vertex ande an edge incident tov. One of the
following holds:

• if v is a feature vertex, then|e| ≥ δ,
• if v a free vertex, then|e| ≥ ρ̄δ, and
• if v is a box vertex, then|e| ≥ 2δ.

Proof: We will prove this lemma’s statement using
induction on the number of the vertices inserted.

Initially, only the 8 box vertices of the bounding box are
triangulated. Since any point on the box is not closer than
2
√

2δ to any feature point, the initial edges are definitely
larger than2δ (actually they are larger than4

√
2δ) and the

statement holds.
Assume that the statement holds after the insertion of the

(i − 1)th vertex, i = 10, 11, . . . (induction hypothesis), and
that theith vertex —sayv —is inserted. The lemma will be
proved, if we show that the lemma’s statement holds for the
edges incident tov. We separate cases.

Assume thatv is a feature vertex. Only R1 or R3 should
have been responsible forv’s insertion. In this case,v is no
closer than2

√
2δ to any box vertex by construction. We also

claim thatv is not closer thanδ to any other feature vertex. If
R1 applies then our claim is obviously true. Suppose that R3
applies. Letf be the restricted facet. From Definition 5, the
centerv of any surface ballB of f is empty of vertices. But
R3 says thatB has radius at leastδ and therefore no vertex
is closer tov than δ. Moreover, notice that the algorithm
deletes all the free vertices closer than2δ to v which implies
that the feature vertexv cannot be closer thanδ to any vertex
and the statement holds.

Now, assume thatv is a free vertex. Only R2 or R4 should
have been responsible forv’s insertion. If R2 applies, then
from the Delaunay property,v is separated from any vertex
by a distance at least equal to2δ > δ. If R4 applies, then
let t be the skinny tetrahedron. Sinceρ (t) ≥ ρ̄, we get that
the circumradius oft is at least|r(t)| ≥ ρ̄ |lmin (t)|; but
lmin (t) is an edge already in the mesh and by the induction
hypothesis is longer thanδ, yielding that|r(t)| ≥ ρ̄δ. Since
v is equal toc (t), no edge incident tov is closer thanρ̄δ

to v, and the statement holds.
So far, we have not covered the casev is a box vertex.

Let t be the intersecting tetrahedron whose center lies on or
outside the box.

Assume that E1 applies. Lets be the encroached edge.
Recall thatv is the centerc (s) of s’s diametral ball. As
we have already mentioned (see Figure 1(a)),S(s) covers
the part ofS(t) that lies inside the box. Therefore,S(s)
contains a feature point, simply becauseS(t) contains a
feature point due to R2. Hence,|r(s)| is at least2

√
2δ by the

way the bounding box was constructed. Hence, after the free
and non-box-edge vertices are removed fromB(s) (as E1
suggests),c (s) will not be closer than2

√
2δ to any vertex

and the statement holds.
Now, assume that E2 applies. Letf be the encroached

facet. Recall thatv is the centerc (f) of f ’s diametral
ball. As we have already mentioned (see Figure 1(b)),S(f)
covers the part ofS(t) that lies inside the box. The same
reasoning as above yields that|r(f)| is at least2

√
2δ by the

way the bounding box was constructed. Also, note that since
f belongs to the triangulation,B(f) does not contain any
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S(s′)

s′

c (f)

Figure 3. The centerc (f) of the diametral ball of an encroached box facet
f (not shown) is considered for insertion, but it lies inside the diametral
sphereS(s′) of a box edges′. The smaller value that|s′| can take is when
c (f) lies onS(s′) and on the bisector ofs′ as shown. From the isosceles
right triangle and from the fact thatc (f) cannot be closer than2

√
2δ to

any ofs′’s endpoints, we get that
|s′|
2

≥ 2δ; therefore, the midpointc (s′)
of s′ cannot be closer than2δ to any vertex that lies outsideB(s′).

box vertices. Therefore, after the free vertices are removed
from B(f) (as E2 suggests),c (f) will not be closer than
2
√

2δ to any vertex and the statement holds.
Lastly, assume thatv was inserted due to E3. Lets′ be

the box edge upon whichc (f) encroaches. Recall thatv
is the centerc (s′) of s′’s diametral ball. As proved in the
previous paragraph,c (f) is not closer than2

√
2δ to any

other box vertex. Sincec (f) lies in the diametral ballB(s′)
of s′, |r(s′)| is at least 2

√
2δ√
2

= 2δ (see Figure 3 for an
illustration). Therefore, after the deletion of the free and
non-box-edge vertices fromB(s′), c (s′) will not be closer
than2δ to any other vertex, and the statement holds.

The next Lemma shows that the boundary facets of the
output mesh are in fact restricted facets.

Lemma 3. Let V be the set of vertices of the output mesh
M. The set of the boundary facets is a subset ofD|∂Ω (V ).

Proof: Recall that the tetrahedra reported as part of
the mesh have circumcenters that lie inside the objectΩ.
Therefore, a facetf is a facet of the mesh boundary if it
is incident upon a tetrahedronti whose circumcenter lies
insideΩ and upon a tetrahedrontj whose circumcenter lies
outsideΩ or on its surface∂Ω. But this means that the dual
Voronoi edge off intersects∂Ω, and therefore,f belongs
to D|∂Ω (V ).

Theorem 2. If ρ̄ ≥ 1, then the algorithm terminates. Also,
all the mesh tetrahedra have radius-edge ratio less thanρ̄

and all the boundary facets have planar angles larger than
30◦.

Proof: Note that we never insert vertices outside the
bounding box which means that the algorithm inserts ver-
tices inside a finite volume. Lemma 2 suggests that any edge

introduced into the mesh will have length larger thanδ, and
therefore, termination is guaranteed.

Upon termination, the tetrahedra reported as part of the
mesh have circumcenters that lie insideΩ and therefore they
cannot be skinny, because otherwise R4 would apply. This
implies that any mesh tetrahedron has radius-edge ratio less
than ρ̄.

Since a boundary facetf is a restricted facet (by
Lemma 3), R3 guarantees that the radiusr(f) of f ’s diame-
tral ball cannot be larger than or equal toδ. From Lemma 2,
we also know that the shortest possible edge is at leastδ units
long. Therefore,ρ (f) = |r(f)|

|lmin(f)| < δ
|lmin(f)| ≤

δ
δ

= 1. It is
well known that a facetf has radius-edge ratio less than1
if and only if its smallest planar angle is larger than30◦.

V. PROOF OFFIDELITY

In this section, we further restrict̄ρ and derive an upper
bound for δ, such that the boundary of the final mesh is
a provably good topological and geometrical approximation
of ∂Ω. Our goal is to prove that the mesh boundary is equal
to D|∂Ω (E) for E a 0.09-sample of∂Ω (see Theorem 3 of
this section). To see why this is enough, recall that from
Theorem 1, the restriction of a0.09-sample of∂Ω to ∂Ω is
a good topological and geometrical approximation of∂Ω.

Let V be the set of vertices appeared in the final mesh
andE be equal toV ∩ ∂Ω.

Lemma 4. Upon termination, for any pointp ∈ ∂Ω, there
is a vertexv ∈ E, such that|p − v| < 5δ.

Proof: Recall that upon termination, there is no tetra-
hedron for which R1, R2, R3, or R4 apply.

Let p be an arbitrary point on∂Ω. Point p has to lie on
or inside the circumsphere of a tetrahedront. Hence,t is an
intersecting tetrahedron. Suppose that pointp′ is the feature
point closest toc (t). Note that|c (t) − p| ≥ |c (t) − p′| and
thereforep′ does not lie outsidet’s circumsphere. There
must exist a feature vertexv closer thanδ to p′, since
otherwise R1 would apply fort. We also know thatt’s
circumradius has to be less than2δ, since otherwise R2
would apply fort. From the triangle inequality, we get that
|p − v| ≤ |p′ − v|+ |p′ − p| ≤ |p′ − v|+2 |r(t)| < δ+4δ =
5δ.

From Lemma 4 and Definition 3, the following corollary
follows:

Corollary 1. If δ ≤ 0.09
5 · lfsmin, thenE is a 0.09-sample

of ∂Ω.

Corollary 1 implies it is enough to prove that the mesh
boundary is equal toD|∂Ω (E), with E being equal toV ∩
∂Ω.

Lemma 5. If ρ̄ ≥ 2, then any facetf ∈ D|∂Ω (V ) has its
vertices on∂Ω.
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Proof: Suppose thatf has a vertexv which does not
lie on ∂Ω, i.e.,v is not a feature vertex. From Lemma 2, we
get that all the edges incident tov are longer than or equal
to 2δ. Hence, the radius of any sphere circumscribingf has
to be at leastδ which raises a contradiction: the diametral
ball of any restricted facetf has radius less thanδ due to
R3.

The following Theorem proves the fidelity guarantees
achieved by our algorithm:

Theorem 3. If δ ≤ 0.09 · lfsmin and ρ̄ ≥ 2, then the mesh
boundary is a 2-manifold ambient isotopic to∂Ω and the
2-sided Hausdorff distance between the mesh boundary and
∂Ω is O(δ2).

Proof: By Theorem 1, it is enough to prove that the
mesh boundary is the restriction to∂Ω of a 0.09-sample of
∂Ω. We will, in fact, show that the mesh boundary is equal
to D|∂Ω (E) which is the restriction to∂Ω of a 0.09-sample
of ∂Ω, by Corollary 1.

We will first show thatD|∂Ω (V ) ⊆ D|∂Ω (E). Let f

belong toD|∂Ω (V ). Lemma 5 implies thatf ’s vertices lie
on ∂Ω. Also, any surface ballB of f does not contain any
vertex ofV , by Definition 5. Therefore,B does not contain
any vertex ofE, sinceE is a subset ofV . But that means
that f is contained inD|∂Ω (E) as well.

We next prove that that the mesh boundary is equal to
D|∂Ω (V ). We have already proved in Lemma 3 that the
mesh boundary is a subset ofD|∂Ω (V ). For the other
direction, let f belong to D|∂Ω (V ). Observe that since
D|∂Ω (⊆)D|∂Ω (E), Lemma 1 suggests that the dual Voronoi
edge of f intersects∂Ω exactly once and transversally.
Hence, there are two tetrahedrati and tj sharing facetf ,
such that one tetrahedron has its circumcenter insideΩ and
the other has its circumcenter outside or onΩ. But that
means thatf is also a member of the mesh boundary.

Now, the only fact we need to prove is thatD|∂Ω (E) is
a subset ofD|∂Ω (V ), since that would imply thatD|∂Ω (E)
is equal toD|∂Ω (V ). But this is, in essence, proved in
Lemma 4.5 of Oudot et al. [3], and the desired result follows.

VI. EXPERIMENTAL EVALUATION

This section presents the final meshes generated by our
algorithm on synthetic and real medical data. All the exper-
iments were conducted on a 64 bit machine equipped with a
2.5 GHz Intel Core 2 Duo CPU and 4 GB of main memory.

We used theInsight Toolkit (ITK) for image process-
ing [20]. ITK provides, among others, the implicit function
f that describes the objectΩ to be meshed (see Section II).
More precisely, given a real pointp, f can tell whether
the voxel to whichp belongs is inside, outside, or exactly
on Ω. The actual mesh generator was built on top of the
Computational Geometry Algorithms Library(CGAL) [21].

Figure 4. The isosurface and a cross section of a sphere meshed by our
algorithm. The surface consists of750 triangles whose planar angles are
larger than30◦. The whole mesh consists of1285 tetrahedra whose radius-
edge ratio is less than2. The refinement process lasted for4 seconds.

CGAL offers flexible data structures for Delaunay point
insertions and removals. For the 3D visualization of the final
mesh, we used theVisualization Toolkit(VTK) [22]; after
the termination of the mesher, we write the output mesh in
a VTK file format which is read by Paraview [23], an open
source visualization application.

This section is divided into two parts. Subsection VI-A
illustrates how our algorithm (described in Section III)
behaves in practice, while Subsection VI-B shows how a
small modification of our algorithm yields a mesh consisting
of tetrahedra with dihedral angles larger than10◦.

A. Theory verification

For all the experiments of this subsection, we setρ̄ to 2,
and therefore (from Theorem 2) all the output tetrahedra are
guaranteed to have radius-edge ratio less than2 and all the
boundary facets are guaranteed to have planar angles larger
than30◦. Recall that quality is not affected by any value of
δ.

Although the fidelity guarantees we give hold for a very
small value ofδ (see Theorem 3), we wanted to see if our
algorithm works well for much larger values ofδ. A larger
value of δ also implies that the size of the output mesh is
smaller. Small-size meshes are desirable for two reason: first,
because the mesh generation execution time is considerably
less and second, because finite element simulations [24, 25]
on them run faster. We observed that even though the fidelity
guarantees proved in Section V do not hold for largeδ, the
results in fact are pretty good. A study of the impact ofδ on
the accuracy of non-rigid registration will appear elsewhere.

We first tested our algorithm on synthetic data. We chose
to mesh a sphere, because we know how the output mesh
should look like. Parameterδ is set to a value50 times larger
than the value Theorem 3 suggests. Figure 4 shows the mesh
generated by our algorithm. The refinement process lasted
for 4 seconds.

We next tested our algorithm on a real human brain image
obtained from Huashan Hospital1. This 3D image has been
acquired by aMagnetic Resonance Imaging(MRI) scanner.

1Huashan Hospital, 12 Wulumuqi Zhong Lu, Shanghai, China.
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Figure 5. (Top row) Two views of the isosurface (generated by Paraview)
of the brain we used in our experiments.(Bottom row) The boundary
triangles (of the isosurfaces of the top row) are shown. The isosurface
itself consists of 90,742 triangles.

The segmented MR brain has been already stored in ITK
format. This (input) image consists of316×316×168 voxels.
The size of each voxel is0.9375× 0.9375× 1.5 mm3.

Meshing a brain is a quite challenging task, since it is a
complex geometry. We compare the fidelity of our mesh with
that obtained by the isosurface contour filter of Paraview.
This filter uses a Marching Cubes [13] variation. Figure 5
shows how Paraview extracted the isosurface of the brain;
observe that some parts are of high curvature.

Figure 6 shows the output of our algorithm. The quality
parameter̄ρ has been set to2, andδ has been set to3mm.
Observe the grading from the boundary towards the interior.
The refinement process took 53 seconds.

Figure 7 shows the output mesh generated by our algo-
rithm for the same brain image, but with an even larger
δ (i.e., 6mm). We also overlaid the output mesh on the
isosurface obtained by Paraview (shown in Figure 5) which
we trust as an “acceptable” approximation. Observe that they
are still very close to each other.

B. Sliver removal

Although our algorithm guarantees that all the mesh tetra-
hedra will have a small radius-edge ratio, some tetrahedra,

Figure 6. Two views of the isosurface and a cross section of the interior
of the brain generated by our algorithm. The isosurface itself consists of
12,340 triangles. All these (boundary) triangles have planar angles larger
than30◦. The total number of tetrahedra is only 27,333. All the tetrahedra
have radius-edge ratio less than2. The refinement took 53 seconds.

(a) (b)

Figure 7. (a) The final mesh reported by our algorithm. The quality
parameter̄ρ has been set to2 and δ to 6mm. The mesh consists of5589
tetrahedra and2856 boundary facets. All the tetrahedra have radius-edge
ratio less than2 and the boundary facets have planar angles larger than
30◦, as it is proved. The refinement process terminated in14 seconds.(b)
The drawn edges are the edges of the boundary facets of our mesh shown
at the left. The gray surface is the “true” surface (shown alone in Figure 5).

referred to asslivers, may have very small dihedral angles.
Figure 8 presents the histogram of the dihedral angles of the
mesh shown in Figure 7(a). Every bar has a width of2◦.
The height of every bar represents the number of tetrahedra
whose smallest dihedral angle falls into the range of the bar.
The histogram shows that few tetrahedra with very small
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Figure 8. The distribution of the dihedral angles of the meshshown
in Figure 7(a). Although the majority of the output tetrahedra have good
angles, there are a few with dihedral angles less than2◦.

dihedral angles may survive.
It would be interesting to see how our algorithm would

perform if we split tetrahedra with small dihedral angles
rather than splitting tetrahedra with large radius-edge ratio.
We, therefore, replaced rule R4 (the rule that splits tetrahedra
with large radius-edge ratio) of our original algorithm with
the following rule:

• R4′: If the circumcenterc (t) of a tetrahedront lies
inside the objectΩ and its smallest dihedral angle is
less thanα degrees, thenc (t) is inserted.

Parameterα is controlled by the user. When the algorithm
terminates, all the dihedral angles of the output mesh will
be larger thanα degrees. Figure 9 shows the output mesh of
our modified algorithm with parameterα being set to10◦.
Although we offer no guarantees in this case, the final mesh
describes fairly well the object surface∂Ω and does not
contain any slivers: all the output tetrahedra have dihedral
angles larger than10◦. We also plot the histogram of the
dihedral angles in this case; see Figure 10.

VII. C ONCLUSIONS ANDFUTURE WORK

We have implemented a 3D Delaunay refinement al-
gorithm which guarantees that the output tetrahedra have
radius-edge ratio less than2 and the boundary facets have
planar angles larger than30◦ (see Theorem 2). We also prove
that if δ is sufficiently small, then the mesh boundary is a
2-manifold ambient isotopic to the object surface and the
2-sided Hausdorff distance between the mesh boundary and
the object surface isO(δ2) (see Theorem 3).

Experimental evaluation of our algorithm on real medical
data (see Subsection VI-A) confirmed the theory and also
showed that we can generate quite coarse meshes very fast.

(a) (b)

Figure 9. The final mesh and a cross section generated by our modified
algorithm withα equal to10◦. Parameterδ is set to the same value with
the value we used for the mesh shown in Figure 7(a). The mesh consists of
6491 tetrahedra and2936 boundary facets. All the tetrahedra have dihedral
angles larger than10◦ and the boundary facets have planar angles larger
than30◦. The refinement process terminated in15 seconds.
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Figure 10. The distribution of the dihedral angles of the mesh shown in
Figure 9. All the dihedral angles are larger than10◦.

An issue we do not completely address in this paper is
the elimination of slivers. In fact, we observed that elements
with dihedral angles less than2◦ may survive (see Figure 8).
As mentioned in the Introduction, slivers can be elimi-
nated using techniques well described in the literature [8,
9]. Although we leavesliver elimination as future work,
preliminary results (see Subsection VI-B) have shown that
in practice, if we just split slivers at their circumcenter,then
the algorithm terminates generating a mesh that describes
fairly well the object surface (see Figure 9) and does not
contain any slivers (see Figure 10).

As shown in Subsection VI-A, our algorithm generates
fewer elements as we travel away from the object surface.
We would also like to achieve good grading along the object
surface, that is, fewer boundary facets on the parts of the
surface far from the medial axis. The fully-graded version
of our algorithm is left as future work.
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