
Guaranteed–Quality Parallel Delaunay Refinement for
Restricted Polyhedral Domains

[Extended Abstract]

Démian Nave
�

Pittsburgh Supercomputing
Center

Carnegie Mellon University
Pittsburgh, PA 15213

dnave@psc.edu

Nikos Chrisochoides
y

Department of Computer
Science

College of William and Mary
Williamsburg, VA 23187

nikos@cs.wm.edu

Paul Chew
z

Department of Computer
Science

Cornell University
Ithaca, NY 14853

chew@cs.cornell.edu

ABSTRACTWe desribe a parallel Delaunay re�nement algorithm forpolyhedral domains whih an generate meshes of tetrahedrawith irumradius to shortest edge ratio less than 2, as longas the angle separating any two inident segments and/orfaets is between 90o and 270o degrees.Our algorithm allows the submesh interfaes indued by anelement{wise partitioning of an initial mesh of the domainto hange as the mesh is re�ned. Conurrently insertedmesh verties an hange the tetrahedralization in manysubmeshes. This exibility is ruial to ensure mesh quality,but it introdues unpreditable and variable latenies dueto long delays in gathering remote data required for updat-ing mesh data strutures. In our experiments, more than80% of this lateny was masked with omputation due tothe �ne{grained onurreny of our algorithm.Our experiments also show that the algorithm is eÆient inpratie, even for ertain domains whose boundaries do notonform to the theoretial limits imposed by the algorithm.The algorithm we desribe is arguably a simple �rst stepin the development of muh more sophistiated guaranteed{quality parallel mesh generation algorithms.�This work was supported by the NSF CISE Challenge#EIA-9726388 and NIH National Center for Researh Re-soures #P41 RR06009yThis work was supported by the NSF Career Award#CCR-0049086, and by NSF grants CISE Challenge #EIA-9726388, Researh Infrastruture #EIA-9972853, and ITRgrant #ACI-0085969.zThis work was supported by NSF ITR #ACI-0085969, NSFChallenges in CISE #EIA-9726388, NSF CISE Researh In-frastruture #EIA-9972853, and NSF #CCR-9988519.

1. INTRODUCTIONThe generation, distribution, and re�nement of good qual-ity tetrahedral meshes of 3D domains is a neessary pro-edure in the adaptive solution of partial di�erential equa-tions on parallel mahines. A traditional approah to re�n-ing and distributing a mesh for a parallel �eld solver might�rst sequentially generate a re�ned mesh, then partition anddistribute this mesh to the proessing elements of a paral-lel mahine with graph partitioning software like parallelMetis [13℄. Repeating these steps to re�ne the mesh basedupon input from an iterative �eld solver is muh less eÆientthan re�ning the mesh in parallel to preserve loality andeliminate expensive I/O.Algorithms for reating distributed Delaunay triangulationsof known point sets have existed for some time, suh as theparallel gift{wrapping algorithm of Teng et. al. [19℄, or theworst{ase optimal reursive parallel projetive Delaunaytriangulation algorithm of Blelloh et. al. [2℄. Assumingthat an initial point set is known is inonvenient for meshre�nement, however, as a mesh re�nement algorithm mustbe able to insert new verties to meet the desired solutionauray of the �eld solver.In ontrast, Chrisohoides et. al. [9℄ present a ombinedtask{ and data{parallel approah for iteratively generat-ing a distributed 2D Delaunay triangulation with a parallelBowyer{Watson [4, 21℄ algorithm. Their approah does notonsider the plaement of new points to guarantee quality,although the submesh interfaes are allowed to hange dueto a newly inserted point. Using a di�erent tehnique to en-sure quality, Chew et. al. [5℄ proposed an eÆient 2D paral-lel onstrained Delaunay mesh generation algorithm whihould ensure quality of the re�ned mesh. The boundary ofeah submesh is �xed in their algorithm by the partitioningof the initial mesh.George et. al. [11℄ present a domain{deomposition based al-gorithm whih heuristially partitions a surfae mesh, ratherthan a volume mesh, of the domain. When suessful, theiralgorithm plaes Delaunay surfaes to partition the domainsuh that the surfaes will appear in a Delaunay tetrahedral-ization of eah subdomain. The subdomains whih result

an then be distributed to the proessing elements (PEs) ofa parallel mahine, and independently meshed by a sequen-tial Delaunay re�nement algorithm.Okusanya et. al. [15℄ present a parallel Bowyer{Watson al-gorithm for 3D mesh re�nement whih inserts new vertiesinto a distributed Delaunay mesh based upon the distribu-tion of a bakground mesh. Muh like the algorithm pro-posed by Chrisohoides et. al. [9℄, their algorithm allows thesubmesh interfaes to hange as new verties are inserted.Their algorithm does not expliitly handle the surfae of thedomain, however.Of the tehniques presented, only the parallel onstrainedDelaunay meshing algorithm of Chew et. al. an be used toensure quality of the resulting mesh, although onstrainedDelaunay triangulations do not neessarily exist in higherdimensions [16℄.Our approah onsists of two steps: 1) sequential mesh ini-tialization (x2), and 2) parallel mesh re�nement (x4). Inthe initialization step, a onforming Delaunay mesh Mo isonstruted whih �lls the input domain
, as long as theangle separating inident entities in �
 is between 90o and270o. In the seond step, Mo is passed as input to ourguaranteed{quality parallel Delaunay re�nement algorithm,whih re�nes a distributed, element{wise deomposition ofthe initial mesh by onurrently and asynhronously addingnew verties into and restoring the Delaunay property ofeah submesh in the distributed mesh.The most important feature of our algorithm is that the sep-arators indued by partitioning the initial mesh are allowedto hange with the tetrahedralization of the submeshes. Con-sequently, we an prove (x4) that our parallel re�nementalgorithm terminates, and generates a new distributed De-launay mesh ontaining tetrahedra whose radius{edge ratiois less than 2.Our experimental data (x5) suggest that our parallel De-launay re�nement algorithm is eÆient in pratie, even forertain domains whose boundaries are not theoretially ad-missible. Our experiments also show that 80% or more of thetime spent bloking on ommuniation is overlapped withuseful omputation, but at the ost of inreased ommu-niation overhead of up to 46%. We show that even withthis additional overhead, our algorithm an reate and plaelarge meshes up to 6 times faster than a typial approah togenerating and re�ning a distributed mesh. Our algorithmappears to be the �rst provably{good parallel mesh re�ne-ment algorithm whih is also pratially eÆient and latenytolerant (x6). We disuss theoretial and pratial improve-ments we are exploring for deployment in future algorithms(x7).
1.1 DefinitionsLet
 be a losed polyhedral domain, possibly having holesand voids, and let �
 be the boundary of
, whose om-ponents are verties, linear vertex{bounded segments, and(not neessarily onvex) planar, segment{bounded, polygo-nal faets. If two segments share a vertex, two faets sharea segment, or a faet and a segment (or another faet) sharea vertex, then they are related; otherwise, they are unre-

lated. We require that the angle separating any two relatedomponents in �
 be at least 90o, but no more than 270o.We allow new mesh verties to be inserted on segments andfaets in �
 to re�ne the domain boundary. A re�ned seg-ment is the union of one or more subsegments whose end-points are verties on the segment. The diametral sphere ofa subsegment s is the unique smallest sphere irumsribingits verties, with enter and diameter as the midpoint andlength of s, respetively.Similarly, a re�ned faet is the union of one or more triangu-lar subfaets in a simpliial triangulation of the verties onthe faet. The equatorial sphere of a subfaet f is the uniquesmallest sphere irumsribing its verties, with enter andradius in the plane of f (referred to as the irumenter andirumradius of f , respetively). A subsegment or subfaetis enroahed if its smallest losed irumsribing sphere en-loses a vertex in T (
) other than its verties.A Delaunay mesh M(
) of
 is the ombination of twomeshes: 1) a Delaunay surfae triangulation D(�
) on-sisting of the re�ned segments and faets of �
, and 2) atetrahedralization T (
) onsisting of Delaunay tetrahedra
, suh that the subsegments and subfaets in D(�
) ap-pear in T (
). M(
) is a good{quality mesh if the irum-radius to shortest edge ratio (radius{edge ratio, or ratio(t))of every tetrahedron t in T (
) is less than 2.
1.2 The Bowyer–Watson AlgorithmTypial Delaunay meshing algorithms are inremental pointinsertion algorithms, in that they begin with empty surfaeand volume Delaunay triangulations, and onstrut a re�nedmesh M(
) of a domain
 by inserting new verties one-at-a-time into both the surfae and/or the volume. After anew vertex v is added into M(
), the Delaunay propertyof the mesh is restored by �rst removing tetrahedra whoseopen irumspheres ontain (or onit with) v, and thenreplaing them with tetrahedra whih are Delaunay withrespet to v and to all existing verties inM(
).The two most ommon algorithms for maintaining the De-launay property of an initial Delaunay tetrahedralization af-ter inserting a new point are the ip [14, 12℄ and Bowyer-Watson [4, 21℄ algorithms. We have hosen the Bowyer-Watson algorithm as the basis of our parallel re�nement al-gorithm, as it is partiularly amenable to parallelization|more so than ip{based algorithms. A areful implemen-tation of the Bowyer-Watson algorithm an be more eÆ-ient than a omparable implementation of a ip{based al-gorithm, beause fewer oating{point alulations are re-quired [3℄.The sequential Bowyer-Watson algorithm generates a newDelaunay tetrahedralization Ti+1, given an initial Delaunaytetrahedralization Ti and a new point pi+1 62 Ti to add toTi. This proess is normally implemented in four steps (see�g. 1 for a 2D example):1. Point loation: Find an initial tetrahedron t 2 Ti thatonits with pi+1.2. Cavity searh: Perform a depth{�rst searh from t over

Initial Mesh, Insertion of p1 andT0 Computation of C(p1)
p

i
p

iBall of New Final Mesh,Elements, B(p1) T1
p

i

p
iFigure 1: The Bowyer-Watson algorithm in <2:Ti+1 = (Ti � Cpi+1) [Bpi+1 .the faes of Ti to ompute Cpi+1 � Ti, the set of alltetrahedra whih onit with pi+1 (Cpi+1 is the inser-tion polyhedron or avity of pi+1).3. Cavity deletion: Ti = Ti�Cpi+1 , leaving a fae{boundedpolyhedral \hole" in Ti. Let Hpi+1 be the set of faesin the boundary of the hole.4. Cavity retriangulation: Bpi+1 = ft; 8f 2 Hpi+1 ; t =pi+1 [fg; then Ti+1 = Ti [Bpi+1 .A depth{�rst searh of Ti an be used to �nd the tetrahe-dra in Cpi+1 whih onit with pi+1, given an initial tetra-hedron, t, as the �rst tetrahedron in the searh. For ourDelaunay mesh re�nement algorithm, point loation is notrequired to �nd t, sine we plae all new verties on (or near)the irumenter of a known tetrahedron.1Beause of the Delaunay property, eah tetrahedron in Cpi+1must share a fae with at least one other tetrahedron inCpi+1 . Tetrahedra not in Cpi+1 whih share at least one faewith a tetrahedron in Cpi+1 are alled losure tetrahedra.The union of these losure tetrahedra and Cpi+1 is alledthe avity losure, �Cpi+1 .Generating the new tetrahedra in Bpi+1 is data struturedependent; a straightforward algorithm an be used to walkthe faes of Hpi+1 and onnet eah to pi+1 [3℄. Note thatit is this bulk update property of the Bowyer-Watson algo-rithm that makes it attrative for parallel Delaunay meshgeneration (see x4).

2. MESH INITIALIZATION AND SEQUEN-
TIAL DELAUNAY REFINEMENTWe desribe next a sequential proedure whih an generatean initial mesh suitable for input to our parallel Delaunayre�nement algorithm. Then, before moving on to developour algorithm, we prove that the base sequential algorithm,1This is also a property shared by existing Delaunay re�ne-ment algorithms. With a ip{based algorithm point loationwould still be neessary, although the searh is bounded bythe size of Cpi+1 .

SeqRe�nement (�g. 2), from whih our parallel algorithmis derived, both terminates and outputs tetrahedra with therequired bounds on radius{edge ratio. Shewhuk [17℄ has de-veloped a sequential algorithm similar to the one presentedhere.
2.1 Initializing a Mesh for Parallel Delaunay

RefinementLet d be the minimum distane between any two unrelatedomponents in �
, times 1=p2. Then, input to our parallelalgorithm is a Delaunay mesh, Mo(
), onsisting of thesurfae triangulation Do and the tetrahedralization To, withthe following properties:1. The segments and faets in �
 appear as a union ofsubsegments and subfaets in Do and To.2. The length of eah subsegment in Do is less than 2d.3. The irumradius of eah subfaet in Do is less thandp2.Mo =Mo(
) an be onstruted with the following proe-dure:1. Segment re�nement: re�ne eah segment S 2 �
 bysubdividing subsegments on S until the length of eahsubsegment on S is less than 2d.2. Faet re�nement: for eah faet F 2 �
, let D be aDelaunay triangulation of the verties of F and theverties added onto the segments bounding F . Then,insert the irumenters of subfaets until the irum-radius of eah subfaet on F is less than dp2. Re-move all subfaets in D whih lie outside of F , and letDo = Do [D.3. Mesh initialization: add the verties in Do by Delau-nay insertion into an empty Delaunay tetrahedraliza-tion, To. Then, remove all tetrahedra in To whih lieoutside of
.The output of this initialization algorithm isMo, a uniform{density onforming Delaunay mesh. It is lear from the de�-nition of d thatMo may ontain many more tetrahedra thanneessary to �ll �
. However, we expet that an order ofmagnitude more tetrahedra will be generated by our parallelre�nement algorithm, thus lessening the e�ets of an overlydense initial mesh (see x5).
3. A SEQUENTIAL DELAUNAY REFINE-

MENT ALGORITHMOur sequential re�nement algorithm (�g. 2) depends upona onstant h, 0 < h < d. The idea here is that d is a rela-tively large value used during initialization to build a oarsemesh suitable for the initial partitioning of the mesh amongparallel proessors, while the onstant h is a smaller valuespeifying the minimum element-size that the user desiresin the �nal mesh.

SeqRe�nement(Mo)Input: Mo, Delaunay mesh generated by initialization al-gorithmOutput: M(
), re�ned Delaunay mesh suh that 8t 2T (
); ratio(t) � 2LetM =Mo, T = To, and D = Dowhile 9t 2 T 3: ratio(t) � 2 doRe�ne(t)end whileRe�ne(�)p irumenter(�)Cp ft; t 2 T and t onits with pgRetriangulate(�,p,Cp)Retriangulate(�,p,Cp)if (� is a subfaet or tetrahedron) and p enroahes sub-segment s 2 Cp thenRe�ne(s); Return.else if � is a tetrahedron and p enroahes a subfaetf 2 Cp thenf maxradius(f)(f 2 D) that p enroahesRe�ne(f); Return.end ifRetriangulate Cp in Tif � 2 D then Retriangulate Cp \ D in DFigure 2: A parallelizable sequential Delaunay mesh-ing algorithm: no subsegment or subfaet is en-roahed upon before or after a new vertex is in-serted; hene, tetrahedra an be re�ned in arbitraryorder.The value of the onstant h is determined either by addingadditional verties into �
 to derease the distane betweenunrelated omponents, or by speifying a size funtion over
 to ontrol the maximum size of tetrahedra. A slight modi-�ation to the algorithm is required to make sure that tetra-hedra larger than the value of the size funtion are re�ned.Our algorithm an potentially introdue slivers (at ele-ments of near-zero volume) into the mesh. The best strategyto produe 3D Delaunay meshes with bounded aspet ratioand without slivers is a subjet of ongoing researh (see, forinstane, [10℄ where one suh strategy is disussed).To show that this algorithm is orret, we prove by indutionthat the algorithm has the following properties: 1) the algo-rithm terminates with the length of the smallest edge greaterthan h, and 2) when the algorithm terminates, ratio(t) � 2for every tetrahedron in the mesh.Consider the following invariants:1. Subsegments and subfaets in D are unenroahed inT before eah new vertex is added toM.2. Eah re�ned subsegment has length greater than 2h.3. Eah re�ned subfaet has irumradius greater thanhp2.

4. Eah re�ned tetrahedron has irumradius greater than2h.We will prove SeqRe�nement is orret by showing thatthese invariants hold throughout the ourse of the algorithm.First, note that eah of these invariants holds at the start ofthe algorithm.Lemma 1. In algorithm SeqRe�nement, the above invari-ants hold after eah iteration through the main loop.Proof. Eah time a new vertex other than a subsegmentmidpoint is inserted, a hek is performed to see if it en-roahes upon a subsegment or a subfaet (in the ase of atetrahedron irumenter). The angle bounds and the valueof d have been hosen to ensure that a new subsegment mid-point an never enroah upon an existing subsegment orsubfaet. Further, when a subfaet irumenter is added,the new vertex an never enroah upon an existing sub-faet without also enroahing upon a subsegment. Thiswould ause the subsegment to be re�ned instead of addingthe irumenter to the mesh. Therefore, it is impossibleto add a new vertex that enroahes upon a subsegment orsubfaet, so the �rst invariant holds.For the remaining invariants, onsider what happens at the�rst ourrene of a failure.Assume the �rst failure ours when some subsegment (says) with length 2h or less is re�ned. Beause of the angleand distane restritions, this an our only if there is anenroahing vertex v that is the irumenter of a subfaet ora tetrahedron. T is Delaunay, so the open sphere entered atv annot ontain the endpoints of s. But, the radius of thissphere is greater than hp2, so the losed diametral sphereof s annot ontain v. This is a ontradition.Next, assume the �rst failure ours when some subfaet(say f) with irumradius hp2 or less is re�ned. Note thatf must be enroahed upon by the irumenter (say v)of some tetrahedron with irumradius greater than 2h tohave been re�ned. Beause T is Delaunay, the open sphereentered at v annot ontain the verties of f , so the vertiesof f are farther than 2h from v. Hene, v an be within thelosed equatorial sphere of f only if f is an obtuse triangle.If this ours, then the subfaet over the obtuse edge of f isa larger{radius subfaet whih is also enroahed upon byv. But, this is a ontradition, sine the algorithm re�nesthe subfaet with the largest irumradius enroahed uponby v.Finally, assume the �rst failure ours when some tetrahe-dron (say t) with irumradius 2h or less is re�ned. Theradius{edge ratio of t must be 2 or more to have been re-�ned, so the length of the shortest edge (all it e) of t is lessthan h. Sine this is assumed to be the �rst failure of theinvariants, every edge in the urrent Delaunay triangulationis the result of re�ning a subsegment of length greater than2h, a subfaet of irumradius greater than hp2, or a tetra-hedron of irumradius greater than 2h. Thus the edge emust have length greater than h. This is a ontradition.

Sine any failure of the invariants leads to a ontradition,the invariants must hold throughout the exeution of thealgorithm.Theorem 1. Algorithm SeqRe�nement terminates, andM has the following properties:1. The length of every edge inM is greater than h.2. The radius{edge ratio of every tetrahedron inM is lessthan 2.Proof Sketh. From Lemma 1, we know that no twoverties of the mesh are ever loser than h. Sine only �nitelymany suh verties an be plaed within a �nite volume,the algorithm must terminate. It's lear from the algorithmthat termination implies that the radius{edge ratio of eahtetrahedron inM is less than 2.Remark 1. The orretness of SeqRe�nement does notdepend on the order in whih newly inserted verties areadded into the mesh.This property makes Algorithm SeqRe�nement relatively easyto parallelize, sine any two avities whih do not intersetan be retriangulated onurrently without invalidating theproof of orretness of SeqRe�nement. We next develop ourparallel re�nement algorithm, whih is straightforward bothin theory and in pratie.
4. PARALLEL DELAUNAY REFINEMENTOur parallel re�nement algorithm is designed for prati-al use, so we impose few restritions on the programmingmodel adopted in an implementation. We assume a relaxed,asynhronous programming model, in whih eah proessingelement (PE) of the parallel system operates independentlyon distributed data strutures to aomplish the ommongoal of generating a re�ned, guaranteed{quality Delaunaymesh.We assume the following properties of the appliation run{time environment:1. The message passing model is that of one-sided, asyn-hronous remote proedure alls as supported by A-tive Messages [20℄, or DMCS [1℄, for example.2. Appliation data strutures in the memory of a sin-gle PE are modi�ed sequentially by any preemptive ornon{preemptive 2 thread exeuting in that PE.We will also assume that an initial mesh,Mo =M(
), hasbeen generated, and it has the properties desribed in x2.1.We also require thatMo be partitioned and distributed tothe PEs in the parallel system, as desribed below:2If non{preemptive threads are not available, then the re-quired state of suspended operations an be stored expliitly,and the funtionality split into several proedures to emulatethe proess of saving and restoring thread state.

S
0

S
1

p
1

p
0

S
0

S
1

p
1

p
0

S
0

S
1

Figure 3: Two overlapping avities are retriangu-lated, whih results in a non{simplial mesh.1. Initial domain deomposition: Mo has been element{wise partitioned into N submeshes SNk=1 Sk = Mo,and distributed to P 3 PEs, where submesh Sk is re-�ned in the memory of PEk. Subfaets and tetrahedrainMo are assumed to be owned by a single PE duringthe omputation, although ownership may hange asthe mesh is re�ned. Eah subfaet and the tetrahedronthat ontains it are always owned by the same PE.2. Submesh onnetivity: if Ij;k = Sj \ Sk 6= ;, then Sjand Sk are adjaent. If Ij;k ontains faes, then Sj andSk are neighbors, Ij;k is an interfae surfae, and faesin Ij;k are interfae faes. Ij is the set of all interfaefaes in Sj . We assume that verties, edges, and faesin Ij;k are repliated in any submeshes that ontainthem. Also, if Sj is a neighbor of Sk, then eah faef 2 Ij \ Ij;k ontains a referene to Sk.The interfae surfaes (or just interfaes) indued by parti-tioningMo may be disontiguous, and are allowed to hangeas new verties are added into the mesh. Further, interfaesdo not onstrain the submesh tetrahedralizations or surfaetriangulations; new verties inserted into one submesh ana�et the tetrahedralization or surfae triangulation in an-other submesh. This exibility is both a fundamental basisfor the quality guarantees of our parallel re�nement algo-rithm, and a useful tool to help load balane the re�nementproess [7℄.We also allow new verties to be onurrently inserted intothe distributed mesh by the PEs in the omputation. Moreimportantly, we allow the avities for these new verties tobe omputed and retriangulated onurrently, as long astheir losures (x1.2) do not share tetrahedra. A setbakours if two or more avities share tetrahedra. Setbaksintrodue additional overhead not present in a sequentialalgorithm (x5), sine they hinder the progress of the algo-rithm, and ause omputation to be restarted.Conurreny introdues additional theoretial and pratialproblems, whih we desribe in the following setions.
4.1 Theoretical Problems Due to ConcurrencyA distributed avity may ontain oniting tetrahedra frommany submeshes, while a avity whih ontains tetrahedrain one submesh is loal. Retriangulating any loal or dis-tributed avity whih intersets another avity an result in3It is also possible to over-deompose Mo by distributingN � P submeshes to P PEs without invalidating our algo-rithm.

p
1

p
0

S
0

S
1

p
1

S
0

S
1

p
1

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����S

0

S
1

Figure 4: Two neighboring avities are retriangu-lated, whih results in a non{Delaunay mesh.a non{simpliial or non{Delaunay mesh. Consider the twofollowing senarios, in whih t is a tetrahedron and f is afae:1. Overlapping avities: 9t 2 Cp \ Cq; if the avities areretriangulated, the result will not be simpliial, sinesome new tetrahedra will be piered by edges (a 2Dexample appears in �g. 3).2. Neighboring avities: 9f 2 Hp \Hq ; if the avities areretriangulated, one or more faes in the boundaries ofthe avities may onit with p and q. (a 2D exampleappears in �g. 4).From the de�nition of the losure, it is lear that the lo-sures of two overlapping or neighboring avities must alsooverlap. We an therefore avoid both problems and ensurea orret mesh by preventing the losures of onurrentlyomputed avities from overlapping, as the following lemmademonstrates.Lemma 2. Let T be a Delaunay tetrahedralization, andlet p and q be two verties, suh that p 6= q and p; q 62 T .If �Cp and �Cq do not overlap, then the tetrahedralization T 00resulting from retriangulating Cp and Cq is Delaunay.Proof. Clear from the Delaunay property of T .Remark 2. If the Bowyer{Watson algorithm is used toretriangulate Cp and Cq, then retriangulating Cp and Cq re-sults in the same tetrahedralization regardless of the order ofretriangulation.This follows from Lemma 2.All that remains is to devise a strategy to prevent the lo-sures of two onurrently omputed avities from overlap-ping. A straightforward solution is to lok tetrahedra in thelosure of a avity as the avity is being omputed. Then,any other avity searh whih tries to aquire a loked tetra-hedron should be terminated, the o�ending avity should bedisarded, and the PE initiating the searh should onsidera new vertex to insert.This simple loking sheme ensures that the losures of anytwo retriangulated avities do not overlap. Therefore, from

A

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

�������
�������
�������
�������

�������
�������
�������
�������

A

C

B

����
����
����
����
����
����
����

����
����
����
����
����
����
����

��
��
��
��
��

��
��
��
��
��

A
B

C D

E ���
���
���
���
���
���

���
���
���
���
���
���

A
B

C
E

DFigure 5: Breadth{�rst parallel searh: satter{gather phases of a breadth{�rst parallel searh forthe subavities A-E. Shaded faes are the markedinterfae faes. The shaded fae between D and Eis interior to the avity, and does not ause an ad-ditional satter{gather phase to be exeuted.Lemma 2, it is lear that retriangulating this avity onur-rently with any other non{overlapping avities results in aDelaunay tetrahedralization.Sine the losure is omputed as a side{e�et of the depth{�rst avity searh, this strategy introdues little additionalwork into our parallel algorithm. It is also straightforwardto ompute a distributed avity by parallelizing the depth{�rst searh used in the sequential Bowyer-Watson algorithm,whih we desribe next.
4.2 Computing a distributed cavityDue to the deomposition ofMo, tetrahedra whih onitwith a new vertex inserted into the mesh may be ontainedin many submeshes. Let v be a new vertex inserted intosubmesh Sj . If Hv\Ij = ;, then the avity Cv � Sj is loal.Otherwise, Cv is distributed, and eah subavity �k � �Cvwith boundary Hk is ontained in some submesh Sk. Notethat �k may ontain only oniting tetrahedra if Hk � Ik.From the properties of the avity, �Cv and its subavities arefae{onneted, so at least two subavities � j and �k in �Cvshare one or more interfae faes (i.e. Hj \ Hk � Ij;k).A parallel graph searh algorithm an therefore be used toompute �Cv by visiting the interfae faes whih onnet thesubavities of �Cv.The �rst omputed subavity � j in a parallel graph searh toompute a distributed avity is the root subavity, whih anbe omputed by sequential depth{�rst searh in Sj . Eahother subavity �k is a hild of the root subavity, and an beomputed by sequential depth{�rst searh from eah tetra-hedron in Sk ontaining an interfae fae in Ik \Hk.For eah hild �k � �Cv, Hj \ Hk � Ij;k for some subav-ity � j � �Cv, so a message ontaining the faes in Ij \ Hkan be sent from PEj to PEk to prime the searh for �k.Sk may ontain several subavities, eah of whih must beomputed to ensure the Delaunay property of the mesh afterretriangulating �Cv.Let v be a new vertex inserted into submesh S0, and assumethat Cv is distributed. The parallel searh to ompute Cv anbe either depth{�rst or breadth{�rst over the subavitiesto be loated. We have hosen to implement the followingbreadth{�rst parallel searh (�g. 5); assume j = 0 to start,and let �0 be the root subavity in S0:Breadth{�rst parallel searh: Exeute the following in

S
0 S

2

p
0

S
1

S
3

p
1

0

2 3

1

S
1

S
0 S

2

S
3

p
1p

0

3

2

S
0

p
0

S
2

S
1

S
3

p
1

3

2

S
0 S

2
S

1

S
3

3

2Figure 6: Invalid submesh onnetivity: triangles intwo neighboring avities are migrated, whih inval-idates the onnetivity information in the sharededge.PE0:1. For eah Sk 3: Ik\H0 6= ;, ompute in PEk eahsubavity �k � Sk sharing an unmarked interfaefae in Ik \H0.2. Mark in H0 and Ik the interfae faes in H0\Hk .Then, if Sk 6= S0, opy the oniting tetrahedraCkv into �0, and update H0.3. If no new subavities were found, then the searhis terminated. Otherwise, ontinue at (1) in PE0.Upon termination, �Cv = �0, and ontains the union of allsubavities ontaining tetrahedra oniting with v. Theoniting tetrahedra in Cv are opied into �0 to �nd inter-fae faes in the distributed avity whih have not yet beenmarked. If �Cv does not overlap any other avity losure,Cv an be inserted into S0 and sequentially retriangulated.Then, the oniting tetrahedra in partiipating submeshesan be removed, and the interfaes whih hanged by mi-grating tetrahedra an be updated.
4.3 Practical Problems Due to ConcurrencyThere are two pratial problems whih still remain to besolved:1. Maintaining submesh onnetivity: if the boundariesof two avities interset at one or more interfae faes,referene information in the faes ould be updatedinorretly when tetrahedra in the avities are mi-grated by the breadth{�rst parallel searh algorithm(see �g. 6).2. Preventing live-lok: our simple strategy of lokingtetrahedra to prevent invalid sharing an result in live-lok, if two PEs repeatedly attempt to insert new ver-ties whose avities overlap lose to the submesh in-terfaes.The submesh onnetivity problem is really a speial aseof the neighboring avities problem, whih we have alreadysolved. Live-lok an be prevented by setting a limit onthe number of times a vertex insertion with the same vertexis attempted. If this threshold is reahed, then the PE at-tempting to insert the vertex an be paused for some randomlength of time, whih should be longer than the round-triptime of a message, before attempting to insert the vertexagain. Alternatively, another vertex ould also be inserted,

ParRe�nement(Mo)Input: SNk=1 Sk, submeshes ofMo.Output: M(
), re�ned Delaunay mesh suh that 8t 2T (
); ratio(t) < 2On eah PEk:Let L be list of to-be-re�ned tetrahedra.Let Q be list of outstanding re�nement threads.loopPoll network for new messages.Yield to threads in Q.t L:remove head()Q thread(Re�ne(t))if jQj = 0, jLj = 0, and all PEs are done then Exit.end loopRe�ne(�)p irumenter(�)Cp breadth-�rst-parallel-searh(p; �)if Cp = ; thenif � is a tetrahedron then L:append(�)Return.end ifRetriangulate(�,p,Cp)for all new tetrahedra t 3: ratio(t) � 2 do L:append(t)Figure 7: Guaranteed{quality parallel Delaunay re-�nement: this algorithm terminates, and 8t 2M(
),ratio(t) < 2.if it has not violated the threshold. Sine it is improbablethat two PEs (or more) will repeatedly hoose the same timeto pause, live-lok is prevented.4
4.4 A Parallel Delaunay Refinement AlgorithmFigure 7 presents our parallel re�nement algorithm, Par-Re�nement. breadth-�rst-parallel-searh, as desribed in x4.2,returns the possibly distributed avity Cp. If �Cp overlaps anyother losure, then this proedure returns an empty av-ity. Otherwise, breadth-�rst-parallel-searh ensures that Cpis ontained in Sk, and that any opies of tetrahedra in Cphave been removed from other submeshes. Note that losuretetrahedra do not need to be removed, and an be used tohelp update the submesh interfaes.Assuming that a live-lok prevention mehanism has beeninstalled into the algorithm, the following theorem showsthat ParRe�nement is orret.Theorem 2. Algorithm ParRe�nement terminates, andM has the following properties:1. The length of every edge inM is greater than h.2. The radius{edge ratio of every tetrahedron inM is lessthan 2.Proof. By Remark 1, if no two avities are retriangu-lated onurrently, thenM has the desired properties. For4It may be worthwhile to note that we have not enounteredlive-lok during the development of our ode.

Figure 8: Experimental domains: (a) ube-in-ube,(b) teeany two onurrently omputed avities whih do not over-lap, suh as those returned from breadth{�rst{parallel{searh,Remark 2 ensures that the resulting mesh is the same asif they were retriangulated sequentially. This implies thatRemark 1 is valid for onurrently retriangulated avities;therefore, by onstrution, ParRe�nement is orret.
5. OVERVIEW OF PERFORMANCEWe have hosen two model problems (see �g 8): (1) a sim-ple ube with a suspended ubial void (ube-in-ube), and(2) a half{tee brae with theoretially inadmissible anglesin its boundary (tee). Our parallel data were olleted ona luster of 16 SPARC Ultra2 333MHz mahines, eah with512MiB RAM, and onneted by a 100MiB/s fast ethernetswithing fabri. Sequentially generated meshes were re-ated on a 450MHz SPARC Ultra-80 with 4GiB RAM, on-neted to a remote �le server via 100MiB/s fast ethernet.More detailed and speialized data pertaining to our par-allel Bowyer-Watson kernel an be found in our ompanionpaper [8℄.The initial meshes passed as input to our implementationof ParRe�nement (x4) ontained about 100; 000 tetrahedra,and were partitioned with sequential Metis [13℄. In eahexperiment, we also spei�ed a onstant size funtion whihallowed us to ontrol the number of tetrahedra in the re�nedmesh. The mesh output by ParRe�nement were uniform{density meshes ontaining 1 to 4 million tetrahedra withirumradius to shortest edge ratio less than 2.Dihedral angle data for elements in a 1 million element meshof the tee appears in �g. 9. In this partiular experiment,the radius{edge ratio of every tetrahedron ranged from :61to 1:5. This plot shows dihedral angles of tetrahedra bothinterior to and near the boundary of the domain. Near theboundary, element dihedral angles are between 1o and 179o,while in the interior, element dihedral angles are between 0oand 179o (slivers appear even in a mesh for this relativelysimple geometry).Note that our experimental implementation is less eÆientthan possible, as it generates only about 1000 tetrahedraper seond per proessor. An optimized implementationould improve this by an order of magnitude or more (seeBourahaki et. al [3℄, for example).Table 1 demonstrates how well our algorithm tolerates thelong, variable, and unpreditable latenies due to the om-

0 30 60 90 120 150 180
ANGLE (DEGREES)

0

10

20

30

40

50

E

LE
M

E
N

T
S

(x

 1
00

0)

Boundary Elements
Interior Elements

Dihedral Angle Distribution
``TEE’’ // 16 PEs // 1M ELEMENTS

Figure 9: Dihedral angle distributions: dihedral an-gle distributions of elements in a 1 million elementmesh of the tee geometry on 16 PEs. Dihedral an-gles near the boundary range from 1o to 179o. In theinterior, slivers appear. As a result, dihedrals rangefrom 0o to 179o. :61 � ratio(t) � 1:5 for all tetrahedrain the mesh.muniation overheads arising from onurrently insertingnew verties into the mesh. It is very diÆult to ompute theatual lateny of eah message inurred during distributedavity searhes. However, we an measure the amount oftime spent by eah PE to ompute and retriangulate avi-ties while the PE ontains distributed avity searh threadswhih are bloked on ommuniation.Further, setbaks on a PE an only our in the presene ofbloked distributed avity searh threads. We an thereforealulate how e�etively eah PE utilizes otherwise wastedtime by omputing the ratio of useful time to total work time(the sum of useful time and setbak time). In our table, thisvalue appears as the average perent of overlap, or latenytolerane. We onsider the useful work to be the total timespent by a PE in omputing and retriangulating avities,inluding those avity searhes whih omplete, but resultin enroahed subsegments and/or subfaets. Setbak timeis the total time spent by a PE in omputing and destroyingavities whih overlap other (distributed) avities.It is lear from this data that our algorithm tolerates 80% ormore of the ommuniation lateny in our experiments, butnot without the signi�ant additional ost of frequent net-work polling indiated in the �nal olumn of tab. 1. Beausethe arrival of messages generated by the breadth{�rst par-allel avity searh algorithm is unpreditable, the networkmust be polled frequently to redue the lifetime of avitysearh threads bloked on ommuniation. In turn, this re-dues the likelihood of inurring a setbak due to lokedtetrahedra, and hene redues the time spent handling set-baks, at the expense of exessive polling.5 The last olumn5Exeuting remote servie requests asynhronously requires�ne{grain loking of mesh data strutures, whih an havenon{obvious and detrimental e�ets on performane.

 Mesh Exeution Completed Masked Time Setbak % Lateny Poll TimeSize Time Cav Time Loal (Dist) Time Tolerane (Exess)ube 1M 53.9 26.6 16.1 (6.0) 2.7 89.1% 17.4 (9.5)in 2M 92.9 52.6 29.1 (11.1) 4.8 89.4% 22.2 (8.6)ube 4M 184.4 105.7 53.0 (20.9) 10.7 87.3% 46.8 (21.8)1M 45.3 24.6 11.9 (2.9) 2.5 85.6% 13.4 (8.9)tee 2M 82.4 48.7 19.8 (4.5) 4.6 84.2% 20.1 (11.2)4M 159.3 91.0 30.9 (8.5) 9.6 80.4% 40.3 (25.7)Table 1: Average lateny tolerane for ube-in-ube and tee: run{time data for the worst lateny{tolerant PEsre�ning the ube-in-ube (top) and tee (bottom) domains on 16 proessors of a CoW. Time spent omputingloal and (in parenthesis) distributed avities in the presene of distributed avities is the masked time.Perent lateny tolerane is the ratio of the masked time over the sum of the masked and setbak times. Thelast olumn shows that exessive polling is a signi�ant soure of wasted time. For the 4 million element tee,21:8s out of 46:8s (46%) was wasted. All times are in seonds.of tab. 1 shows the total amount of time spent polling onthe PE, along with the time wasted in exessive polling.Even with this additional overhead, our experimental im-plementation an generate and plae meshes 6 times fasterthan traditional tehniques, as shown in tab. 2. This ta-ble depits traditional versus parallel performane data for1 to 4 million element meshes of the ube-in-ube domain on16 PEs. For onsisteny, the sequential meshes were gener-ated with SeqRe�nement The parallel mesher was initializedwith a 100; 000 element mesh, also generated by SeqRe�ne-ment, whih was partitioned by Metis [13℄, and distributedvia NFS to the ompute nodes.
6. CONCLUSIONSWe have desribed a provably orret (albeit very restrited)parallel Delaunay mesh re�nement algorithm, whih is pra-tially eÆient and lateny tolerant due to the �ne{grainonurreny a�orded by deomposing an initial mesh andindependently re�ning the submeshes. Our algorithm is oneof only a handful of available tehniques for generating, pla-ing, and re�ning a distributed mesh.An experimental implementation of our algorithm has beenshown to mask more than 80% of the time spent in blokingon ommuniation requests, although the ost is inreasedommuniation overhead, primarily due to polling the net-work to ensure timely reeption of messages. Even so, ourimplementation has been shown to reate and plae largemeshes up to 6 times faster than a typial approah to gen-erating a distributed mesh.
7. FUTURE WORKIn order to weaken the angle restritions on the domainboundary (and maintain a similar proof struture), we needonly design an algorithm whih preserves the orretnessof Remark 1 and Lemma 2. By ensuring that two avitiesan be retriangulated in arbitrary order (Remark 1), our se-quential proof of orretness an be applied without hangeto a parallel re�nement algorithm whih only retriangulatesnon{overlapping avities (Lemma 2).For example, it is possible to modify our algorithm to weakenthe angle restrition for inident segments. The re�nementof an enroahed subsegment an trigger the re�nement of

possibly (but not pratially) many other subsegments whihwould diretly or indiretly beome enroahed due to in-serting the subsegment midpoint. It is straightforward toshow that no enroahed subsegments will remain in themesh by retriangulating en masse all avities resulting fromthe midpoints of these enroahed subsegments. If any av-ity ould not be ompleted due to loked tetrahedra, then allof the avities must be destroyed (en masse).6 This proe-dure would allow arbitrarily ordered subsegment re�nementwhile preserving the invariant of unenroahed subsegments.Preserving the invariant of unenroahed subfaets is not sostraightforward, however; this is the subjet of urrent in-vestigation.Data not presented here, but whih will appear in the �-nal version of this paper, shows that our algorithm o�ers�xed speedup proportional to log P , and salable speedupproportional to P , where P is the number of PEs. As ex-peted, the performane of our algorithm depends heavilyupon the volume of messages exhanged by the PEs. Weare therefore atively studying the diÆult problem of tol-erating long, variable, and unpreditable latenies due toonurreny, without introduing the large ommuniationoverheads urrently inurred by the algorithm. These stud-ies inlude methods to shedule vertex insertions so as toprevent overlapping avities [6℄.
8. ACKNOWLEDGMENTSThis work was performed using omputational failities atthe College of William and Mary whih were enabled bygrants from the National Siene Foundation (EIA-9977030)and Sun Mirosystems (SAR# EDU00-03-793, EDU-02-Q1-197).
9. REFERENCES[1℄ K. Barker, N. Chrisohoides, J. Dobbelaere, D. Nave,and K. Pingali. Data Movement and ControlSubstrate for parallel, adaptive appliations. Aeptedto Conurreny Pratie and Experiene, 2001.[2℄ G. Blelloh, J. Hardwik, G. Miller, and D. Talmor.Design and implementation of a pratial parallelDelaunay algorithm. Algorithmia, 24:243{269, 1999.6This is a variant of an idea Shewhuk proposed [18℄ in theontext of re�ning a domain with small angles.

Mesh Size Mesh Gen. (I/O) Part. (I/O) Total Par. Time Improvement1M 147 (37) 14 (75) 273 81 3x2M 305 (82) 33 (158) 578 120 4x4M 650 (175) 75 (379) 1278 211 6xTable 2: Parallel mesh generation vs. traditional approah for ube-in-ube: 16 proessor CoW experimentsindiate up to 6x speedup for a 4 million element mesh. The time measured for the traditional approahinludes the sequential mesh generation, partitioning, and I/O (read/write) times. The time measured forparallel mesh generation inludes 100; 000 element sequential mesh initialization, partitioning, and I/O time,and the time spent loading and generating the mesh. All times are in seonds.[3℄ H. Borouhaki, P. L. George, and S. H. Lo. OptimalDelaunay point insertion. International Journal forNumerial Methods in Engineering, 39, 1996.[4℄ A. Bowyer. Computing Dirihlet tessellations. TheComputer Journal, 24(2):162{166, 1981.[5℄ P. Chew, N. Chrisohoides, and F. Sukup. Parallelonstrained Delaunay meshing. In Proeedings of 1997Joint ASME/ASCE/SES Summer Meeting, SpeialSymposium on Trends in Unstrutured MeshGeneration, July 1997.[6℄ N. Chrisohoides and L. Linardakis. Parallel Delaunaymesh generation using deoupling zone. To besubmitted.[7℄ N. Chrisohoides and D. Nave. Simultaneous meshgeneration and partitioning. Mathematis andComputers in Simulation, 2000.[8℄ N. Chrisohoides and D. Nave. Parallel Delaunaymesh generation kernel. Submitted to IJNME, 2001.[9℄ N. Chrisohoides and F. Sukup. Task parallelimplementation of the BOWYER-WATSONalgorithm. In Proeedings of Fifth InternationalConferene on Numerial Grid Generation inComputational Fluid Dynamis and Related Fields,1996.[10℄ H. Edelsbrunner. Geometry and Topology for MeshGeneration. Cambridge University Press, Cambridge,England, 2001.[11℄ J. Galtier and P. L. George. Prepartitioning as a wayto mesh subdomains in parallel. In Speial Symposiumon Trends in Unstrutured Mesh Generation.ASME/ASCE/SES, 1997.[12℄ B. Joe. Constrution of three-dimensional Delaunaytriangulations using loal transformations. ComputerAided Geometri Design, 10:123{142, 1989.[13℄ G. Karypis, K. Shloegel, and V. Kumar. PARMETIS{ parallel graph partitioning and sparse matrixordering library, Version 2.0. University of Minnesota,Minneapolis, MN, 1998.[14℄ C. Lawson. Software for C1 surfae interpolation. InJ. R. Rie, editor, Mathematial Software III, pages161{194. Aademi Press, New York, 1977.[15℄ T. Okusanya and J. Peraire. 3D parallel unstruturedmesh generation. In S. A. Canann and S. Saigal,editors, Trends in Unstrutured Mesh Generation,pages 109{116, 1997.

[16℄ J. R. Shewhuk. A ondition guaranteeing theexistene of higher-dimensional onstrained Delaunaytriangulations. In Fourteenth Symposium onComputational Geometry, pages 76{85. ACM, 1998.[17℄ J. R. Shewhuk. Tetrahedral mesh generation byDelaunay re�nement. In Symposium on ComputationalGeometry, pages 86{95, 1998.[18℄ J. R. Shewhuk. Mesh generation for domains withsmall angles. In Sixteenth Symposium onComputational Geometry, pages 111{112. ACM, 2000.[19℄ Y. A. Teng, F. Sullivan, I. Beihl, and E. Puppo. Adata-parallel algorithm for three-dimensionalDelaunay triangulation and its implementation. InSuperComputing, pages 112{121. ACM, 1993.[20℄ T. von Eiken, D. Culler, S. Goldstein, andK. Shauser. Ative Messages: A mehanism forintegrated ommuniation and omputation. InNineteenth International Symposium on ComputerArhiteture. ACM, 1992.[21℄ D. F. Watson. Computing the n-dimensional Delaunaytessellation with appliation to Voronoi polytopes.The Computer Journal, 24(2):167{172, 1981.

