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ABSTRACTWe des
ribe a parallel Delaunay re�nement algorithm forpolyhedral domains whi
h 
an generate meshes of tetrahedrawith 
ir
umradius to shortest edge ratio less than 2, as longas the angle separating any two in
ident segments and/orfa
ets is between 90o and 270o degrees.Our algorithm allows the submesh interfa
es indu
ed by anelement{wise partitioning of an initial mesh of the domainto 
hange as the mesh is re�ned. Con
urrently insertedmesh verti
es 
an 
hange the tetrahedralization in manysubmeshes. This 
exibility is 
ru
ial to ensure mesh quality,but it introdu
es unpredi
table and variable laten
ies dueto long delays in gathering remote data required for updat-ing mesh data stru
tures. In our experiments, more than80% of this laten
y was masked with 
omputation due tothe �ne{grained 
on
urren
y of our algorithm.Our experiments also show that the algorithm is eÆ
ient inpra
ti
e, even for 
ertain domains whose boundaries do not
onform to the theoreti
al limits imposed by the algorithm.The algorithm we des
ribe is arguably a simple �rst stepin the development of mu
h more sophisti
ated guaranteed{quality parallel mesh generation algorithms.�This work was supported by the NSF CISE Challenge#EIA-9726388 and NIH National Center for Resear
h Re-sour
es #P41 RR06009yThis work was supported by the NSF Career Award#CCR-0049086, and by NSF grants CISE Challenge #EIA-9726388, Resear
h Infrastru
ture #EIA-9972853, and ITRgrant #ACI-0085969.zThis work was supported by NSF ITR #ACI-0085969, NSFChallenges in CISE #EIA-9726388, NSF CISE Resear
h In-frastru
ture #EIA-9972853, and NSF #CCR-9988519.

1. INTRODUCTIONThe generation, distribution, and re�nement of good qual-ity tetrahedral meshes of 3D domains is a ne
essary pro-
edure in the adaptive solution of partial di�erential equa-tions on parallel ma
hines. A traditional approa
h to re�n-ing and distributing a mesh for a parallel �eld solver might�rst sequentially generate a re�ned mesh, then partition anddistribute this mesh to the pro
essing elements of a paral-lel ma
hine with graph partitioning software like parallelMetis [13℄. Repeating these steps to re�ne the mesh basedupon input from an iterative �eld solver is mu
h less eÆ
ientthan re�ning the mesh in parallel to preserve lo
ality andeliminate expensive I/O.Algorithms for 
reating distributed Delaunay triangulationsof known point sets have existed for some time, su
h as theparallel gift{wrapping algorithm of Teng et. al. [19℄, or theworst{
ase optimal re
ursive parallel proje
tive Delaunaytriangulation algorithm of Blello
h et. al. [2℄. Assumingthat an initial point set is known is in
onvenient for meshre�nement, however, as a mesh re�nement algorithm mustbe able to insert new verti
es to meet the desired solutiona

ura
y of the �eld solver.In 
ontrast, Chriso
hoides et. al. [9℄ present a 
ombinedtask{ and data{parallel approa
h for iteratively generat-ing a distributed 2D Delaunay triangulation with a parallelBowyer{Watson [4, 21℄ algorithm. Their approa
h does not
onsider the pla
ement of new points to guarantee quality,although the submesh interfa
es are allowed to 
hange dueto a newly inserted point. Using a di�erent te
hnique to en-sure quality, Chew et. al. [5℄ proposed an eÆ
ient 2D paral-lel 
onstrained Delaunay mesh generation algorithm whi
h
ould ensure quality of the re�ned mesh. The boundary ofea
h submesh is �xed in their algorithm by the partitioningof the initial mesh.George et. al. [11℄ present a domain{de
omposition based al-gorithm whi
h heuristi
ally partitions a surfa
e mesh, ratherthan a volume mesh, of the domain. When su

essful, theiralgorithm pla
es Delaunay surfa
es to partition the domainsu
h that the surfa
es will appear in a Delaunay tetrahedral-ization of ea
h subdomain. The subdomains whi
h result




an then be distributed to the pro
essing elements (PEs) ofa parallel ma
hine, and independently meshed by a sequen-tial Delaunay re�nement algorithm.Okusanya et. al. [15℄ present a parallel Bowyer{Watson al-gorithm for 3D mesh re�nement whi
h inserts new verti
esinto a distributed Delaunay mesh based upon the distribu-tion of a ba
kground mesh. Mu
h like the algorithm pro-posed by Chriso
hoides et. al. [9℄, their algorithm allows thesubmesh interfa
es to 
hange as new verti
es are inserted.Their algorithm does not expli
itly handle the surfa
e of thedomain, however.Of the te
hniques presented, only the parallel 
onstrainedDelaunay meshing algorithm of Chew et. al. 
an be used toensure quality of the resulting mesh, although 
onstrainedDelaunay triangulations do not ne
essarily exist in higherdimensions [16℄.Our approa
h 
onsists of two steps: 1) sequential mesh ini-tialization (x2), and 2) parallel mesh re�nement (x4). Inthe initialization step, a 
onforming Delaunay mesh Mo is
onstru
ted whi
h �lls the input domain 
, as long as theangle separating in
ident entities in �
 is between 90o and270o. In the se
ond step, Mo is passed as input to ourguaranteed{quality parallel Delaunay re�nement algorithm,whi
h re�nes a distributed, element{wise de
omposition ofthe initial mesh by 
on
urrently and asyn
hronously addingnew verti
es into and restoring the Delaunay property ofea
h submesh in the distributed mesh.The most important feature of our algorithm is that the sep-arators indu
ed by partitioning the initial mesh are allowedto 
hange with the tetrahedralization of the submeshes. Con-sequently, we 
an prove (x4) that our parallel re�nementalgorithm terminates, and generates a new distributed De-launay mesh 
ontaining tetrahedra whose radius{edge ratiois less than 2.Our experimental data (x5) suggest that our parallel De-launay re�nement algorithm is eÆ
ient in pra
ti
e, even for
ertain domains whose boundaries are not theoreti
ally ad-missible. Our experiments also show that 80% or more of thetime spent blo
king on 
ommuni
ation is overlapped withuseful 
omputation, but at the 
ost of in
reased 
ommu-ni
ation overhead of up to 46%. We show that even withthis additional overhead, our algorithm 
an 
reate and pla
elarge meshes up to 6 times faster than a typi
al approa
h togenerating and re�ning a distributed mesh. Our algorithmappears to be the �rst provably{good parallel mesh re�ne-ment algorithm whi
h is also pra
ti
ally eÆ
ient and laten
ytolerant (x6). We dis
uss theoreti
al and pra
ti
al improve-ments we are exploring for deployment in future algorithms(x7).
1.1 DefinitionsLet 
 be a 
losed polyhedral domain, possibly having holesand voids, and let �
 be the boundary of 
, whose 
om-ponents are verti
es, linear vertex{bounded segments, and(not ne
essarily 
onvex) planar, segment{bounded, polygo-nal fa
ets. If two segments share a vertex, two fa
ets sharea segment, or a fa
et and a segment (or another fa
et) sharea vertex, then they are related; otherwise, they are unre-

lated. We require that the angle separating any two related
omponents in �
 be at least 90o, but no more than 270o.We allow new mesh verti
es to be inserted on segments andfa
ets in �
 to re�ne the domain boundary. A re�ned seg-ment is the union of one or more subsegments whose end-points are verti
es on the segment. The diametral sphere ofa subsegment s is the unique smallest sphere 
ir
ums
ribingits verti
es, with 
enter and diameter as the midpoint andlength of s, respe
tively.Similarly, a re�ned fa
et is the union of one or more triangu-lar subfa
ets in a simpli
ial triangulation of the verti
es onthe fa
et. The equatorial sphere of a subfa
et f is the uniquesmallest sphere 
ir
ums
ribing its verti
es, with 
enter andradius in the plane of f (referred to as the 
ir
um
enter and
ir
umradius of f , respe
tively). A subsegment or subfa
etis en
roa
hed if its smallest 
losed 
ir
ums
ribing sphere en-
loses a vertex in T (
) other than its verti
es.A Delaunay mesh M(
) of 
 is the 
ombination of twomeshes: 1) a Delaunay surfa
e triangulation D(�
) 
on-sisting of the re�ned segments and fa
ets of �
, and 2) atetrahedralization T (
) 
onsisting of Delaunay tetrahedra
, su
h that the subsegments and subfa
ets in D(�
) ap-pear in T (
). M(
) is a good{quality mesh if the 
ir
um-radius to shortest edge ratio (radius{edge ratio, or ratio(t))of every tetrahedron t in T (
) is less than 2.
1.2 The Bowyer–Watson AlgorithmTypi
al Delaunay meshing algorithms are in
remental pointinsertion algorithms, in that they begin with empty surfa
eand volume Delaunay triangulations, and 
onstru
t a re�nedmesh M(
) of a domain 
 by inserting new verti
es one-at-a-time into both the surfa
e and/or the volume. After anew vertex v is added into M(
), the Delaunay propertyof the mesh is restored by �rst removing tetrahedra whoseopen 
ir
umspheres 
ontain (or 
on
i
t with) v, and thenrepla
ing them with tetrahedra whi
h are Delaunay withrespe
t to v and to all existing verti
es inM(
).The two most 
ommon algorithms for maintaining the De-launay property of an initial Delaunay tetrahedralization af-ter inserting a new point are the 
ip [14, 12℄ and Bowyer-Watson [4, 21℄ algorithms. We have 
hosen the Bowyer-Watson algorithm as the basis of our parallel re�nement al-gorithm, as it is parti
ularly amenable to parallelization|more so than 
ip{based algorithms. A 
areful implemen-tation of the Bowyer-Watson algorithm 
an be more eÆ-
ient than a 
omparable implementation of a 
ip{based al-gorithm, be
ause fewer 
oating{point 
al
ulations are re-quired [3℄.The sequential Bowyer-Watson algorithm generates a newDelaunay tetrahedralization Ti+1, given an initial Delaunaytetrahedralization Ti and a new point pi+1 62 Ti to add toTi. This pro
ess is normally implemented in four steps (see�g. 1 for a 2D example):1. Point lo
ation: Find an initial tetrahedron t 2 Ti that
on
i
ts with pi+1.2. Cavity sear
h: Perform a depth{�rst sear
h from t over
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iFigure 1: The Bowyer-Watson algorithm in <2:Ti+1 = (Ti � Cpi+1) [ Bpi+1 .the fa
es of Ti to 
ompute Cpi+1 � Ti, the set of alltetrahedra whi
h 
on
i
t with pi+1 (Cpi+1 is the inser-tion polyhedron or 
avity of pi+1).3. Cavity deletion: Ti = Ti�Cpi+1 , leaving a fa
e{boundedpolyhedral \hole" in Ti. Let Hpi+1 be the set of fa
esin the boundary of the hole.4. Cavity retriangulation: Bpi+1 = ft; 8f 2 Hpi+1 ; t =pi+1 [ fg; then Ti+1 = Ti [ Bpi+1 .A depth{�rst sear
h of Ti 
an be used to �nd the tetrahe-dra in Cpi+1 whi
h 
on
i
t with pi+1, given an initial tetra-hedron, t, as the �rst tetrahedron in the sear
h. For ourDelaunay mesh re�nement algorithm, point lo
ation is notrequired to �nd t, sin
e we pla
e all new verti
es on (or near)the 
ir
um
enter of a known tetrahedron.1Be
ause of the Delaunay property, ea
h tetrahedron in Cpi+1must share a fa
e with at least one other tetrahedron inCpi+1 . Tetrahedra not in Cpi+1 whi
h share at least one fa
ewith a tetrahedron in Cpi+1 are 
alled 
losure tetrahedra.The union of these 
losure tetrahedra and Cpi+1 is 
alledthe 
avity 
losure, �Cpi+1 .Generating the new tetrahedra in Bpi+1 is data stru
turedependent; a straightforward algorithm 
an be used to walkthe fa
es of Hpi+1 and 
onne
t ea
h to pi+1 [3℄. Note thatit is this bulk update property of the Bowyer-Watson algo-rithm that makes it attra
tive for parallel Delaunay meshgeneration (see x4).

2. MESH INITIALIZATION AND SEQUEN-
TIAL DELAUNAY REFINEMENTWe des
ribe next a sequential pro
edure whi
h 
an generatean initial mesh suitable for input to our parallel Delaunayre�nement algorithm. Then, before moving on to developour algorithm, we prove that the base sequential algorithm,1This is also a property shared by existing Delaunay re�ne-ment algorithms. With a 
ip{based algorithm point lo
ationwould still be ne
essary, although the sear
h is bounded bythe size of Cpi+1 .

SeqRe�nement (�g. 2), from whi
h our parallel algorithmis derived, both terminates and outputs tetrahedra with therequired bounds on radius{edge ratio. Shew
huk [17℄ has de-veloped a sequential algorithm similar to the one presentedhere.
2.1 Initializing a Mesh for Parallel Delaunay

RefinementLet d be the minimum distan
e between any two unrelated
omponents in �
, times 1=p2. Then, input to our parallelalgorithm is a Delaunay mesh, Mo(
), 
onsisting of thesurfa
e triangulation Do and the tetrahedralization To, withthe following properties:1. The segments and fa
ets in �
 appear as a union ofsubsegments and subfa
ets in Do and To.2. The length of ea
h subsegment in Do is less than 2d.3. The 
ir
umradius of ea
h subfa
et in Do is less thandp2.Mo =Mo(
) 
an be 
onstru
ted with the following pro
e-dure:1. Segment re�nement: re�ne ea
h segment S 2 �
 bysubdividing subsegments on S until the length of ea
hsubsegment on S is less than 2d.2. Fa
et re�nement: for ea
h fa
et F 2 �
, let D be aDelaunay triangulation of the verti
es of F and theverti
es added onto the segments bounding F . Then,insert the 
ir
um
enters of subfa
ets until the 
ir
um-radius of ea
h subfa
et on F is less than dp2. Re-move all subfa
ets in D whi
h lie outside of F , and letDo = Do [D.3. Mesh initialization: add the verti
es in Do by Delau-nay insertion into an empty Delaunay tetrahedraliza-tion, To. Then, remove all tetrahedra in To whi
h lieoutside of 
.The output of this initialization algorithm isMo, a uniform{density 
onforming Delaunay mesh. It is 
lear from the de�-nition of d thatMo may 
ontain many more tetrahedra thanne
essary to �ll �
. However, we expe
t that an order ofmagnitude more tetrahedra will be generated by our parallelre�nement algorithm, thus lessening the e�e
ts of an overlydense initial mesh (see x5).
3. A SEQUENTIAL DELAUNAY REFINE-

MENT ALGORITHMOur sequential re�nement algorithm (�g. 2) depends upona 
onstant h, 0 < h < d. The idea here is that d is a rela-tively large value used during initialization to build a 
oarsemesh suitable for the initial partitioning of the mesh amongparallel pro
essors, while the 
onstant h is a smaller valuespe
ifying the minimum element-size that the user desiresin the �nal mesh.



SeqRe�nement(Mo)Input: Mo, Delaunay mesh generated by initialization al-gorithmOutput: M(
), re�ned Delaunay mesh su
h that 8t 2T (
); ratio(t) � 2LetM =Mo, T = To, and D = Dowhile 9t 2 T 3: ratio(t) � 2 doRe�ne(t)end whileRe�ne(�)p 
ir
um
enter(�)Cp  ft; t 2 T and t 
on
i
ts with pgRetriangulate(�,p,Cp)Retriangulate(�,p,Cp)if (� is a subfa
et or tetrahedron) and p en
roa
hes sub-segment s 2 Cp thenRe�ne(s); Return.else if � is a tetrahedron and p en
roa
hes a subfa
etf 2 Cp thenf  maxradius(f)(f 2 D) that p en
roa
hesRe�ne(f); Return.end ifRetriangulate Cp in Tif � 2 D then Retriangulate Cp \ D in DFigure 2: A parallelizable sequential Delaunay mesh-ing algorithm: no subsegment or subfa
et is en-
roa
hed upon before or after a new vertex is in-serted; hen
e, tetrahedra 
an be re�ned in arbitraryorder.The value of the 
onstant h is determined either by addingadditional verti
es into �
 to de
rease the distan
e betweenunrelated 
omponents, or by spe
ifying a size fun
tion over
 to 
ontrol the maximum size of tetrahedra. A slight modi-�
ation to the algorithm is required to make sure that tetra-hedra larger than the value of the size fun
tion are re�ned.Our algorithm 
an potentially introdu
e slivers (
at ele-ments of near-zero volume) into the mesh. The best strategyto produ
e 3D Delaunay meshes with bounded aspe
t ratioand without slivers is a subje
t of ongoing resear
h (see, forinstan
e, [10℄ where one su
h strategy is dis
ussed).To show that this algorithm is 
orre
t, we prove by indu
tionthat the algorithm has the following properties: 1) the algo-rithm terminates with the length of the smallest edge greaterthan h, and 2) when the algorithm terminates, ratio(t) � 2for every tetrahedron in the mesh.Consider the following invariants:1. Subsegments and subfa
ets in D are unen
roa
hed inT before ea
h new vertex is added toM.2. Ea
h re�ned subsegment has length greater than 2h.3. Ea
h re�ned subfa
et has 
ir
umradius greater thanhp2.

4. Ea
h re�ned tetrahedron has 
ir
umradius greater than2h.We will prove SeqRe�nement is 
orre
t by showing thatthese invariants hold throughout the 
ourse of the algorithm.First, note that ea
h of these invariants holds at the start ofthe algorithm.Lemma 1. In algorithm SeqRe�nement, the above invari-ants hold after ea
h iteration through the main loop.Proof. Ea
h time a new vertex other than a subsegmentmidpoint is inserted, a 
he
k is performed to see if it en-
roa
hes upon a subsegment or a subfa
et (in the 
ase of atetrahedron 
ir
um
enter). The angle bounds and the valueof d have been 
hosen to ensure that a new subsegment mid-point 
an never en
roa
h upon an existing subsegment orsubfa
et. Further, when a subfa
et 
ir
um
enter is added,the new vertex 
an never en
roa
h upon an existing sub-fa
et without also en
roa
hing upon a subsegment. Thiswould 
ause the subsegment to be re�ned instead of addingthe 
ir
um
enter to the mesh. Therefore, it is impossibleto add a new vertex that en
roa
hes upon a subsegment orsubfa
et, so the �rst invariant holds.For the remaining invariants, 
onsider what happens at the�rst o

urren
e of a failure.Assume the �rst failure o

urs when some subsegment (says) with length 2h or less is re�ned. Be
ause of the angleand distan
e restri
tions, this 
an o

ur only if there is anen
roa
hing vertex v that is the 
ir
um
enter of a subfa
et ora tetrahedron. T is Delaunay, so the open sphere 
entered atv 
annot 
ontain the endpoints of s. But, the radius of thissphere is greater than hp2, so the 
losed diametral sphereof s 
annot 
ontain v. This is a 
ontradi
tion.Next, assume the �rst failure o

urs when some subfa
et(say f) with 
ir
umradius hp2 or less is re�ned. Note thatf must be en
roa
hed upon by the 
ir
um
enter (say v)of some tetrahedron with 
ir
umradius greater than 2h tohave been re�ned. Be
ause T is Delaunay, the open sphere
entered at v 
annot 
ontain the verti
es of f , so the verti
esof f are farther than 2h from v. Hen
e, v 
an be within the
losed equatorial sphere of f only if f is an obtuse triangle.If this o

urs, then the subfa
et over the obtuse edge of f isa larger{radius subfa
et whi
h is also en
roa
hed upon byv. But, this is a 
ontradi
tion, sin
e the algorithm re�nesthe subfa
et with the largest 
ir
umradius en
roa
hed uponby v.Finally, assume the �rst failure o

urs when some tetrahe-dron (say t) with 
ir
umradius 2h or less is re�ned. Theradius{edge ratio of t must be 2 or more to have been re-�ned, so the length of the shortest edge (
all it e) of t is lessthan h. Sin
e this is assumed to be the �rst failure of theinvariants, every edge in the 
urrent Delaunay triangulationis the result of re�ning a subsegment of length greater than2h, a subfa
et of 
ir
umradius greater than hp2, or a tetra-hedron of 
ir
umradius greater than 2h. Thus the edge emust have length greater than h. This is a 
ontradi
tion.



Sin
e any failure of the invariants leads to a 
ontradi
tion,the invariants must hold throughout the exe
ution of thealgorithm.Theorem 1. Algorithm SeqRe�nement terminates, andM has the following properties:1. The length of every edge inM is greater than h.2. The radius{edge ratio of every tetrahedron inM is lessthan 2.Proof Sket
h. From Lemma 1, we know that no twoverti
es of the mesh are ever 
loser than h. Sin
e only �nitelymany su
h verti
es 
an be pla
ed within a �nite volume,the algorithm must terminate. It's 
lear from the algorithmthat termination implies that the radius{edge ratio of ea
htetrahedron inM is less than 2.Remark 1. The 
orre
tness of SeqRe�nement does notdepend on the order in whi
h newly inserted verti
es areadded into the mesh.This property makes Algorithm SeqRe�nement relatively easyto parallelize, sin
e any two 
avities whi
h do not interse
t
an be retriangulated 
on
urrently without invalidating theproof of 
orre
tness of SeqRe�nement. We next develop ourparallel re�nement algorithm, whi
h is straightforward bothin theory and in pra
ti
e.
4. PARALLEL DELAUNAY REFINEMENTOur parallel re�nement algorithm is designed for pra
ti-
al use, so we impose few restri
tions on the programmingmodel adopted in an implementation. We assume a relaxed,asyn
hronous programming model, in whi
h ea
h pro
essingelement (PE) of the parallel system operates independentlyon distributed data stru
tures to a

omplish the 
ommongoal of generating a re�ned, guaranteed{quality Delaunaymesh.We assume the following properties of the appli
ation run{time environment:1. The message passing model is that of one-sided, asyn-
hronous remote pro
edure 
alls as supported by A
-tive Messages [20℄, or DMCS [1℄, for example.2. Appli
ation data stru
tures in the memory of a sin-gle PE are modi�ed sequentially by any preemptive ornon{preemptive 2 thread exe
uting in that PE.We will also assume that an initial mesh,Mo =M(
), hasbeen generated, and it has the properties des
ribed in x2.1.We also require thatMo be partitioned and distributed tothe PEs in the parallel system, as des
ribed below:2If non{preemptive threads are not available, then the re-quired state of suspended operations 
an be stored expli
itly,and the fun
tionality split into several pro
edures to emulatethe pro
ess of saving and restoring thread state.
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Figure 3: Two overlapping 
avities are retriangu-lated, whi
h results in a non{simpli
al mesh.1. Initial domain de
omposition: Mo has been element{wise partitioned into N submeshes SNk=1 Sk = Mo,and distributed to P 3 PEs, where submesh Sk is re-�ned in the memory of PEk. Subfa
ets and tetrahedrainMo are assumed to be owned by a single PE duringthe 
omputation, although ownership may 
hange asthe mesh is re�ned. Ea
h subfa
et and the tetrahedronthat 
ontains it are always owned by the same PE.2. Submesh 
onne
tivity: if Ij;k = Sj \ Sk 6= ;, then Sjand Sk are adja
ent. If Ij;k 
ontains fa
es, then Sj andSk are neighbors, Ij;k is an interfa
e surfa
e, and fa
esin Ij;k are interfa
e fa
es. Ij is the set of all interfa
efa
es in Sj . We assume that verti
es, edges, and fa
esin Ij;k are repli
ated in any submeshes that 
ontainthem. Also, if Sj is a neighbor of Sk, then ea
h fa
ef 2 Ij \ Ij;k 
ontains a referen
e to Sk.The interfa
e surfa
es (or just interfa
es) indu
ed by parti-tioningMo may be dis
ontiguous, and are allowed to 
hangeas new verti
es are added into the mesh. Further, interfa
esdo not 
onstrain the submesh tetrahedralizations or surfa
etriangulations; new verti
es inserted into one submesh 
ana�e
t the tetrahedralization or surfa
e triangulation in an-other submesh. This 
exibility is both a fundamental basisfor the quality guarantees of our parallel re�nement algo-rithm, and a useful tool to help load balan
e the re�nementpro
ess [7℄.We also allow new verti
es to be 
on
urrently inserted intothe distributed mesh by the PEs in the 
omputation. Moreimportantly, we allow the 
avities for these new verti
es tobe 
omputed and retriangulated 
on
urrently, as long astheir 
losures (x1.2) do not share tetrahedra. A setba
ko

urs if two or more 
avities share tetrahedra. Setba
ksintrodu
e additional overhead not present in a sequentialalgorithm (x5), sin
e they hinder the progress of the algo-rithm, and 
ause 
omputation to be restarted.Con
urren
y introdu
es additional theoreti
al and pra
ti
alproblems, whi
h we des
ribe in the following se
tions.
4.1 Theoretical Problems Due to ConcurrencyA distributed 
avity may 
ontain 
on
i
ting tetrahedra frommany submeshes, while a 
avity whi
h 
ontains tetrahedrain one submesh is lo
al. Retriangulating any lo
al or dis-tributed 
avity whi
h interse
ts another 
avity 
an result in3It is also possible to over-de
ompose Mo by distributingN � P submeshes to P PEs without invalidating our algo-rithm.
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Figure 4: Two neighboring 
avities are retriangu-lated, whi
h results in a non{Delaunay mesh.a non{simpli
ial or non{Delaunay mesh. Consider the twofollowing s
enarios, in whi
h t is a tetrahedron and f is afa
e:1. Overlapping 
avities: 9t 2 Cp \ Cq; if the 
avities areretriangulated, the result will not be simpli
ial, sin
esome new tetrahedra will be pier
ed by edges (a 2Dexample appears in �g. 3).2. Neighboring 
avities: 9f 2 Hp \Hq ; if the 
avities areretriangulated, one or more fa
es in the boundaries ofthe 
avities may 
on
i
t with p and q. (a 2D exampleappears in �g. 4).From the de�nition of the 
losure, it is 
lear that the 
lo-sures of two overlapping or neighboring 
avities must alsooverlap. We 
an therefore avoid both problems and ensurea 
orre
t mesh by preventing the 
losures of 
on
urrently
omputed 
avities from overlapping, as the following lemmademonstrates.Lemma 2. Let T be a Delaunay tetrahedralization, andlet p and q be two verti
es, su
h that p 6= q and p; q 62 T .If �Cp and �Cq do not overlap, then the tetrahedralization T 00resulting from retriangulating Cp and Cq is Delaunay.Proof. Clear from the Delaunay property of T .Remark 2. If the Bowyer{Watson algorithm is used toretriangulate Cp and Cq, then retriangulating Cp and Cq re-sults in the same tetrahedralization regardless of the order ofretriangulation.This follows from Lemma 2.All that remains is to devise a strategy to prevent the 
lo-sures of two 
on
urrently 
omputed 
avities from overlap-ping. A straightforward solution is to lo
k tetrahedra in the
losure of a 
avity as the 
avity is being 
omputed. Then,any other 
avity sear
h whi
h tries to a
quire a lo
ked tetra-hedron should be terminated, the o�ending 
avity should bedis
arded, and the PE initiating the sear
h should 
onsidera new vertex to insert.This simple lo
king s
heme ensures that the 
losures of anytwo retriangulated 
avities do not overlap. Therefore, from
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DFigure 5: Breadth{�rst parallel sear
h: s
atter{gather phases of a breadth{�rst parallel sear
h forthe sub
avities A-E. Shaded fa
es are the markedinterfa
e fa
es. The shaded fa
e between D and Eis interior to the 
avity, and does not 
ause an ad-ditional s
atter{gather phase to be exe
uted.Lemma 2, it is 
lear that retriangulating this 
avity 
on
ur-rently with any other non{overlapping 
avities results in aDelaunay tetrahedralization.Sin
e the 
losure is 
omputed as a side{e�e
t of the depth{�rst 
avity sear
h, this strategy introdu
es little additionalwork into our parallel algorithm. It is also straightforwardto 
ompute a distributed 
avity by parallelizing the depth{�rst sear
h used in the sequential Bowyer-Watson algorithm,whi
h we des
ribe next.
4.2 Computing a distributed cavityDue to the de
omposition ofMo, tetrahedra whi
h 
on
i
twith a new vertex inserted into the mesh may be 
ontainedin many submeshes. Let v be a new vertex inserted intosubmesh Sj . If Hv\Ij = ;, then the 
avity Cv � Sj is lo
al.Otherwise, Cv is distributed, and ea
h sub
avity �
k � �Cvwith boundary Hk is 
ontained in some submesh Sk. Notethat �
k may 
ontain only 
on
i
ting tetrahedra if Hk � Ik.From the properties of the 
avity, �Cv and its sub
avities arefa
e{
onne
ted, so at least two sub
avities �
 j and �
k in �Cvshare one or more interfa
e fa
es (i.e. Hj \ Hk � Ij;k).A parallel graph sear
h algorithm 
an therefore be used to
ompute �Cv by visiting the interfa
e fa
es whi
h 
onne
t thesub
avities of �Cv.The �rst 
omputed sub
avity �
 j in a parallel graph sear
h to
ompute a distributed 
avity is the root sub
avity, whi
h 
anbe 
omputed by sequential depth{�rst sear
h in Sj . Ea
hother sub
avity �
k is a 
hild of the root sub
avity, and 
an be
omputed by sequential depth{�rst sear
h from ea
h tetra-hedron in Sk 
ontaining an interfa
e fa
e in Ik \Hk.For ea
h 
hild �
k � �Cv, Hj \ Hk � Ij;k for some sub
av-ity �
 j � �Cv, so a message 
ontaining the fa
es in Ij \ Hk
an be sent from PEj to PEk to prime the sear
h for �
k.Sk may 
ontain several sub
avities, ea
h of whi
h must be
omputed to ensure the Delaunay property of the mesh afterretriangulating �Cv.Let v be a new vertex inserted into submesh S0, and assumethat Cv is distributed. The parallel sear
h to 
ompute Cv 
anbe either depth{�rst or breadth{�rst over the sub
avitiesto be lo
ated. We have 
hosen to implement the followingbreadth{�rst parallel sear
h (�g. 5); assume j = 0 to start,and let �
0 be the root sub
avity in S0:Breadth{�rst parallel sear
h: Exe
ute the following in
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2Figure 6: Invalid submesh 
onne
tivity: triangles intwo neighboring 
avities are migrated, whi
h inval-idates the 
onne
tivity information in the sharededge.PE0:1. For ea
h Sk 3: Ik\H0 6= ;, 
ompute in PEk ea
hsub
avity �
k � Sk sharing an unmarked interfa
efa
e in Ik \H0.2. Mark in H0 and Ik the interfa
e fa
es in H0\Hk .Then, if Sk 6= S0, 
opy the 
on
i
ting tetrahedraCkv into �
0, and update H0.3. If no new sub
avities were found, then the sear
his terminated. Otherwise, 
ontinue at (1) in PE0.Upon termination, �Cv = �
0, and 
ontains the union of allsub
avities 
ontaining tetrahedra 
on
i
ting with v. The
on
i
ting tetrahedra in Cv are 
opied into �
0 to �nd inter-fa
e fa
es in the distributed 
avity whi
h have not yet beenmarked. If �Cv does not overlap any other 
avity 
losure,Cv 
an be inserted into S0 and sequentially retriangulated.Then, the 
on
i
ting tetrahedra in parti
ipating submeshes
an be removed, and the interfa
es whi
h 
hanged by mi-grating tetrahedra 
an be updated.
4.3 Practical Problems Due to ConcurrencyThere are two pra
ti
al problems whi
h still remain to besolved:1. Maintaining submesh 
onne
tivity: if the boundariesof two 
avities interse
t at one or more interfa
e fa
es,referen
e information in the fa
es 
ould be updatedin
orre
tly when tetrahedra in the 
avities are mi-grated by the breadth{�rst parallel sear
h algorithm(see �g. 6).2. Preventing live-lo
k: our simple strategy of lo
kingtetrahedra to prevent invalid sharing 
an result in live-lo
k, if two PEs repeatedly attempt to insert new ver-ti
es whose 
avities overlap 
lose to the submesh in-terfa
es.The submesh 
onne
tivity problem is really a spe
ial 
aseof the neighboring 
avities problem, whi
h we have alreadysolved. Live-lo
k 
an be prevented by setting a limit onthe number of times a vertex insertion with the same vertexis attempted. If this threshold is rea
hed, then the PE at-tempting to insert the vertex 
an be paused for some randomlength of time, whi
h should be longer than the round-triptime of a message, before attempting to insert the vertexagain. Alternatively, another vertex 
ould also be inserted,

ParRe�nement(Mo)Input: SNk=1 Sk, submeshes ofMo.Output: M(
), re�ned Delaunay mesh su
h that 8t 2T (
); ratio(t) < 2On ea
h PEk:Let L be list of to-be-re�ned tetrahedra.Let Q be list of outstanding re�nement threads.loopPoll network for new messages.Yield to threads in Q.t L:remove head()Q thread(Re�ne(t))if jQj = 0, jLj = 0, and all PEs are done then Exit.end loopRe�ne(�)p 
ir
um
enter(�)Cp  breadth-�rst-parallel-sear
h(p; �)if Cp = ; thenif � is a tetrahedron then L:append(�)Return.end ifRetriangulate(�,p,Cp)for all new tetrahedra t 3: ratio(t) � 2 do L:append(t)Figure 7: Guaranteed{quality parallel Delaunay re-�nement: this algorithm terminates, and 8t 2M(
),ratio(t) < 2.if it has not violated the threshold. Sin
e it is improbablethat two PEs (or more) will repeatedly 
hoose the same timeto pause, live-lo
k is prevented.4
4.4 A Parallel Delaunay Refinement AlgorithmFigure 7 presents our parallel re�nement algorithm, Par-Re�nement. breadth-�rst-parallel-sear
h, as des
ribed in x4.2,returns the possibly distributed 
avity Cp. If �Cp overlaps anyother 
losure, then this pro
edure returns an empty 
av-ity. Otherwise, breadth-�rst-parallel-sear
h ensures that Cpis 
ontained in Sk, and that any 
opies of tetrahedra in Cphave been removed from other submeshes. Note that 
losuretetrahedra do not need to be removed, and 
an be used tohelp update the submesh interfa
es.Assuming that a live-lo
k prevention me
hanism has beeninstalled into the algorithm, the following theorem showsthat ParRe�nement is 
orre
t.Theorem 2. Algorithm ParRe�nement terminates, andM has the following properties:1. The length of every edge inM is greater than h.2. The radius{edge ratio of every tetrahedron inM is lessthan 2.Proof. By Remark 1, if no two 
avities are retriangu-lated 
on
urrently, thenM has the desired properties. For4It may be worthwhile to note that we have not en
ounteredlive-lo
k during the development of our 
ode.



Figure 8: Experimental domains: (a) 
ube-in-
ube,(b) teeany two 
on
urrently 
omputed 
avities whi
h do not over-lap, su
h as those returned from breadth{�rst{parallel{sear
h,Remark 2 ensures that the resulting mesh is the same asif they were retriangulated sequentially. This implies thatRemark 1 is valid for 
on
urrently retriangulated 
avities;therefore, by 
onstru
tion, ParRe�nement is 
orre
t.
5. OVERVIEW OF PERFORMANCEWe have 
hosen two model problems (see �g 8): (1) a sim-ple 
ube with a suspended 
ubi
al void (
ube-in-
ube), and(2) a half{tee bra
e with theoreti
ally inadmissible anglesin its boundary (tee). Our parallel data were 
olle
ted ona 
luster of 16 SPARC Ultra2 333MHz ma
hines, ea
h with512MiB RAM, and 
onne
ted by a 100MiB/s fast ethernetswit
hing fabri
. Sequentially generated meshes were 
re-ated on a 450MHz SPARC Ultra-80 with 4GiB RAM, 
on-ne
ted to a remote �le server via 100MiB/s fast ethernet.More detailed and spe
ialized data pertaining to our par-allel Bowyer-Watson kernel 
an be found in our 
ompanionpaper [8℄.The initial meshes passed as input to our implementationof ParRe�nement (x4) 
ontained about 100; 000 tetrahedra,and were partitioned with sequential Metis [13℄. In ea
hexperiment, we also spe
i�ed a 
onstant size fun
tion whi
hallowed us to 
ontrol the number of tetrahedra in the re�nedmesh. The mesh output by ParRe�nement were uniform{density meshes 
ontaining 1 to 4 million tetrahedra with
ir
umradius to shortest edge ratio less than 2.Dihedral angle data for elements in a 1 million element meshof the tee appears in �g. 9. In this parti
ular experiment,the radius{edge ratio of every tetrahedron ranged from :61to 1:5. This plot shows dihedral angles of tetrahedra bothinterior to and near the boundary of the domain. Near theboundary, element dihedral angles are between 1o and 179o,while in the interior, element dihedral angles are between 0oand 179o (slivers appear even in a mesh for this relativelysimple geometry).Note that our experimental implementation is less eÆ
ientthan possible, as it generates only about 1000 tetrahedraper se
ond per pro
essor. An optimized implementation
ould improve this by an order of magnitude or more (seeBoura
haki et. al [3℄, for example).Table 1 demonstrates how well our algorithm tolerates thelong, variable, and unpredi
table laten
ies due to the 
om-

0 30 60 90 120 150 180
ANGLE (DEGREES)

0

10

20

30

40

50

# 
E

LE
M

E
N

T
S

   
(x

 1
00

0)

Boundary Elements
Interior Elements

Dihedral Angle Distribution
``TEE’’  //  16 PEs  //  1M ELEMENTS

Figure 9: Dihedral angle distributions: dihedral an-gle distributions of elements in a 1 million elementmesh of the tee geometry on 16 PEs. Dihedral an-gles near the boundary range from 1o to 179o. In theinterior, slivers appear. As a result, dihedrals rangefrom 0o to 179o. :61 � ratio(t) � 1:5 for all tetrahedrain the mesh.muni
ation overheads arising from 
on
urrently insertingnew verti
es into the mesh. It is very diÆ
ult to 
ompute thea
tual laten
y of ea
h message in
urred during distributed
avity sear
hes. However, we 
an measure the amount oftime spent by ea
h PE to 
ompute and retriangulate 
avi-ties while the PE 
ontains distributed 
avity sear
h threadswhi
h are blo
ked on 
ommuni
ation.Further, setba
ks on a PE 
an only o

ur in the presen
e ofblo
ked distributed 
avity sear
h threads. We 
an therefore
al
ulate how e�e
tively ea
h PE utilizes otherwise wastedtime by 
omputing the ratio of useful time to total work time(the sum of useful time and setba
k time). In our table, thisvalue appears as the average per
ent of overlap, or laten
ytoleran
e. We 
onsider the useful work to be the total timespent by a PE in 
omputing and retriangulating 
avities,in
luding those 
avity sear
hes whi
h 
omplete, but resultin en
roa
hed subsegments and/or subfa
ets. Setba
k timeis the total time spent by a PE in 
omputing and destroying
avities whi
h overlap other (distributed) 
avities.It is 
lear from this data that our algorithm tolerates 80% ormore of the 
ommuni
ation laten
y in our experiments, butnot without the signi�
ant additional 
ost of frequent net-work polling indi
ated in the �nal 
olumn of tab. 1. Be
ausethe arrival of messages generated by the breadth{�rst par-allel 
avity sear
h algorithm is unpredi
table, the networkmust be polled frequently to redu
e the lifetime of 
avitysear
h threads blo
ked on 
ommuni
ation. In turn, this re-du
es the likelihood of in
urring a setba
k due to lo
kedtetrahedra, and hen
e redu
es the time spent handling set-ba
ks, at the expense of ex
essive polling.5 The last 
olumn5Exe
uting remote servi
e requests asyn
hronously requires�ne{grain lo
king of mesh data stru
tures, whi
h 
an havenon{obvious and detrimental e�e
ts on performan
e.




 Mesh Exe
ution Completed Masked Time Setba
k % Laten
y Poll TimeSize Time Cav Time Lo
al (Dist) Time Toleran
e (Ex
ess)
ube 1M 53.9 26.6 16.1 (6.0) 2.7 89.1% 17.4 (9.5)in 2M 92.9 52.6 29.1 (11.1) 4.8 89.4% 22.2 (8.6)
ube 4M 184.4 105.7 53.0 (20.9) 10.7 87.3% 46.8 (21.8)1M 45.3 24.6 11.9 (2.9) 2.5 85.6% 13.4 (8.9)tee 2M 82.4 48.7 19.8 (4.5) 4.6 84.2% 20.1 (11.2)4M 159.3 91.0 30.9 (8.5) 9.6 80.4% 40.3 (25.7)Table 1: Average laten
y toleran
e for 
ube-in-
ube and tee: run{time data for the worst laten
y{tolerant PEsre�ning the 
ube-in-
ube (top) and tee (bottom) domains on 16 pro
essors of a CoW. Time spent 
omputinglo
al and (in parenthesis) distributed 
avities in the presen
e of distributed 
avities is the masked time.Per
ent laten
y toleran
e is the ratio of the masked time over the sum of the masked and setba
k times. Thelast 
olumn shows that ex
essive polling is a signi�
ant sour
e of wasted time. For the 4 million element tee,21:8s out of 46:8s (46%) was wasted. All times are in se
onds.of tab. 1 shows the total amount of time spent polling onthe PE, along with the time wasted in ex
essive polling.Even with this additional overhead, our experimental im-plementation 
an generate and pla
e meshes 6 times fasterthan traditional te
hniques, as shown in tab. 2. This ta-ble depi
ts traditional versus parallel performan
e data for1 to 4 million element meshes of the 
ube-in-
ube domain on16 PEs. For 
onsisten
y, the sequential meshes were gener-ated with SeqRe�nement The parallel mesher was initializedwith a 100; 000 element mesh, also generated by SeqRe�ne-ment, whi
h was partitioned by Metis [13℄, and distributedvia NFS to the 
ompute nodes.
6. CONCLUSIONSWe have des
ribed a provably 
orre
t (albeit very restri
ted)parallel Delaunay mesh re�nement algorithm, whi
h is pra
-ti
ally eÆ
ient and laten
y tolerant due to the �ne{grain
on
urren
y a�orded by de
omposing an initial mesh andindependently re�ning the submeshes. Our algorithm is oneof only a handful of available te
hniques for generating, pla
-ing, and re�ning a distributed mesh.An experimental implementation of our algorithm has beenshown to mask more than 80% of the time spent in blo
kingon 
ommuni
ation requests, although the 
ost is in
reased
ommuni
ation overhead, primarily due to polling the net-work to ensure timely re
eption of messages. Even so, ourimplementation has been shown to 
reate and pla
e largemeshes up to 6 times faster than a typi
al approa
h to gen-erating a distributed mesh.
7. FUTURE WORKIn order to weaken the angle restri
tions on the domainboundary (and maintain a similar proof stru
ture), we needonly design an algorithm whi
h preserves the 
orre
tnessof Remark 1 and Lemma 2. By ensuring that two 
avities
an be retriangulated in arbitrary order (Remark 1), our se-quential proof of 
orre
tness 
an be applied without 
hangeto a parallel re�nement algorithm whi
h only retriangulatesnon{overlapping 
avities (Lemma 2).For example, it is possible to modify our algorithm to weakenthe angle restri
tion for in
ident segments. The re�nementof an en
roa
hed subsegment 
an trigger the re�nement of

possibly (but not pra
ti
ally) many other subsegments whi
hwould dire
tly or indire
tly be
ome en
roa
hed due to in-serting the subsegment midpoint. It is straightforward toshow that no en
roa
hed subsegments will remain in themesh by retriangulating en masse all 
avities resulting fromthe midpoints of these en
roa
hed subsegments. If any 
av-ity 
ould not be 
ompleted due to lo
ked tetrahedra, then allof the 
avities must be destroyed (en masse).6 This pro
e-dure would allow arbitrarily ordered subsegment re�nementwhile preserving the invariant of unen
roa
hed subsegments.Preserving the invariant of unen
roa
hed subfa
ets is not sostraightforward, however; this is the subje
t of 
urrent in-vestigation.Data not presented here, but whi
h will appear in the �-nal version of this paper, shows that our algorithm o�ers�xed speedup proportional to log P , and s
alable speedupproportional to P , where P is the number of PEs. As ex-pe
ted, the performan
e of our algorithm depends heavilyupon the volume of messages ex
hanged by the PEs. Weare therefore a
tively studying the diÆ
ult problem of tol-erating long, variable, and unpredi
table laten
ies due to
on
urren
y, without introdu
ing the large 
ommuni
ationoverheads 
urrently in
urred by the algorithm. These stud-ies in
lude methods to s
hedule vertex insertions so as toprevent overlapping 
avities [6℄.
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