Guaranteed—Quality Parallel Delaunay Refinement for
Restricted Polyhedral Domains

[Extended Abstract]

*
Démian Nave
Pittsburgh Supercomputing
Center
Carnegie Mellon University
Pittsburgh, PA 15213

dnave@psc.edu

ABSTRACT

We describe a parallel Delaunay refinement algorithm for
polyhedral domains which can generate meshes of tetrahedra
with circumradius to shortest edge ratio less than 2, as long
as the angle separating any two incident segments and/or
facets is between 90° and 270° degrees.

Our algorithm allows the submesh interfaces induced by an
element—wise partitioning of an initial mesh of the domain
to change as the mesh is refined. Concurrently inserted
mesh vertices can change the tetrahedralization in many
submeshes. This flexibility is crucial to ensure mesh quality,
but it introduces unpredictable and variable latencies due
to long delays in gathering remote data required for updat-
ing mesh data structures. In our experiments, more than
80% of this latency was masked with computation due to
the fine—grained concurrency of our algorithm.

Our experiments also show that the algorithm is efficient in
practice, even for certain domains whose boundaries do not
conform to the theoretical limits imposed by the algorithm.
The algorithm we describe is arguably a simple first step
in the development of much more sophisticated guaranteed
quality parallel mesh generation algorithms.

*This work was supported by the NSF CISE Challenge
#ETA-9726388 and NIH National Center for Research Re-
sources #P41 RR06009

JrThis work was supported by the NSF Career Award
#CCR-0049086, and by NSF grants CISE Challenge #EIA-
9726388, Research Infrastructure #KEIA-9972853, and ITR
grant #ACI-0085969.

iThis work was supported by NSF ITR #ACI-0085969, NSF
Challenges in CISE #EIA-9726388, NSF CISE Research In-
frastructure #ETA-9972853, and NSF #CCR-9988519.

Nikos ChrisochoidesJr
Department of Computer
Science
College of William and Mary
Williamsburg, VA 23187

nikos@cs.wm.edu

Paul ChewiE
Department of Computer
Science
Cornell University
Ithaca, NY 14853

chew@cs.cornell.edu

1. INTRODUCTION

The generation, distribution, and refinement of good qual-
ity tetrahedral meshes of 3D domains is a necessary pro-
cedure in the adaptive solution of partial differential equa-
tions on parallel machines. A traditional approach to refin-
ing and distributing a mesh for a parallel field solver might
first sequentially generate a refined mesh, then partition and
distribute this mesh to the processing elements of a paral-
lel machine with graph partitioning software like parallel
Metis [13]. Repeating these steps to refine the mesh based
upon input from an iterative field solver is much less efficient
than refining the mesh in parallel to preserve locality and
eliminate expensive I/O.

Algorithms for creating distributed Delaunay triangulations
of known point sets have existed for some time, such as the
parallel gift—wrapping algorithm of Teng et. al. [19], or the
worst case optimal recursive parallel projective Delaunay
triangulation algorithm of Blelloch et. al. [2]. Assuming
that an initial point set is known is inconvenient for mesh
refinement, however, as a mesh refinement algorithm must
be able to insert new vertices to meet the desired solution
accuracy of the field solver.

In contrast, Chrisochoides et. al. [9] present a combined
task— and data—parallel approach for iteratively generat-
ing a distributed 2D Delaunay triangulation with a parallel
Bowyer-Watson [4, 21] algorithm. Their approach does not
consider the placement of new points to guarantee quality,
although the submesh interfaces are allowed to change due
to a newly inserted point. Using a different technique to en-
sure quality, Chew et. al. [5] proposed an efficient 2D paral-
lel constrained Delaunay mesh generation algorithm which
could ensure quality of the refined mesh. The boundary of
each submesh is fixed in their algorithm by the partitioning
of the initial mesh.

George et. al. [11] present a domain-decomposition based al-
gorithm which heuristically partitions a surface mesh, rather
than a volume mesh, of the domain. When successful, their
algorithm places Delaunay surfaces to partition the domain
such that the surfaces will appear in a Delaunay tetrahedral-
ization of each subdomain. The subdomains which result

can then be distributed to the processing elements (PEs) of
a parallel machine, and independently meshed by a sequen-
tial Delaunay refinement algorithm.

Okusanya et. al. [15] present a parallel Bowyer—Watson al-
gorithm for 3D mesh refinement which inserts new vertices
into a distributed Delaunay mesh based upon the distribu-
tion of a background mesh. Much like the algorithm pro-
posed by Chrisochoides et. al. [9], their algorithm allows the
submesh interfaces to change as new vertices are inserted.
Their algorithm does not explicitly handle the surface of the
domain, however.

Of the techniques presented, only the parallel constrained
Delaunay meshing algorithm of Chew et. al. can be used to
ensure quality of the resulting mesh, although constrained
Delaunay triangulations do not necessarily exist in higher
dimensions [16].

Our approach consists of two steps: 1) sequential mesh ini-
tialization (§2), and 2) parallel mesh refinement (§4). In
the initialization step, a conforming Delaunay mesh M, is
constructed which fills the input domain €2, as long as the
angle separating incident entities in 0€2 is between 90° and
270°. In the second step, M, is passed as input to our
guaranteed—quality parallel Delaunay refinement algorithm,
which refines a distributed, element wise decomposition of
the initial mesh by concurrently and asynchronously adding
new vertices into and restoring the Delaunay property of
each submesh in the distributed mesh.

The most important feature of our algorithm is that the sep-
arators induced by partitioning the initial mesh are allowed
to change with the tetrahedralization of the submeshes. Con-
sequently, we can prove (§4) that our parallel refinement
algorithm terminates, and generates a new distributed De-
launay mesh containing tetrahedra whose radius edge ratio
is less than 2.

Our experimental data (§5) suggest that our parallel De-
launay refinement algorithm is efficient in practice, even for
certain domains whose boundaries are not theoretically ad-
missible. Our experiments also show that 80% or more of the
time spent blocking on communication is overlapped with
useful computation, but at the cost of increased commu-
nication overhead of up to 46%. We show that even with
this additional overhead, our algorithm can create and place
large meshes up to 6 times faster than a typical approach to
generating and refining a distributed mesh. Our algorithm
appears to be the first provably—good parallel mesh refine-
ment algorithm which is also practically efficient and latency
tolerant (§6). We discuss theoretical and practical improve-
ments we are exploring for deployment in future algorithms

(§7).

1.1 Definitions

Let Q be a closed polyhedral domain, possibly having holes
and voids, and let 9 be the boundary of 2, whose com-
ponents are vertices, linear vertex—bounded segments, and
(not necessarily convex) planar, segment—bounded, polygo-
nal facets. If two segments share a vertex, two facets share
a segment, or a facet and a segment (or another facet) share
a vertex, then they are related; otherwise, they are unre-

lated. We require that the angle separating any two related
components in 9N be at least 90°, but no more than 270°.

We allow new mesh vertices to be inserted on segments and
facets in OS2 to refine the domain boundary. A refined seg-
ment is the union of one or more subsegments whose end-
points are vertices on the segment. The diametral sphere of
a subsegment s is the unique smallest sphere circumscribing
its vertices, with center and diameter as the midpoint and
length of s, respectively.

Similarly, a refined facet is the union of one or more triangu-
lar subfacets in a simplicial triangulation of the vertices on
the facet. The equatorial sphere of a subfacet f is the unique
smallest sphere circumscribing its vertices, with center and
radius in the plane of f (referred to as the circumcenter and
circumradius of f, respectively). A subsegment or subfacet
is encroached if its smallest closed circumscribing sphere en-
closes a vertex in 7 () other than its vertices.

A Delaunay mesh M(Q) of Q is the combination of two
meshes: 1) a Delaunay surface triangulation D(9€2) con-
sisting of the refined segments and facets of 9, and 2) a
tetrahedralization 7 (€2) consisting of Delaunay tetrahedra
Q, such that the subsegments and subfacets in D(92) ap-
pear in T(Q). M(Q) is a good—quality mesh if the circum-
radius to shortest edge ratio (radius edge ratio, or ratio(t))
of every tetrahedron ¢ in 7(€2) is less than 2.

1.2 The Bowyer-Watson Algorithm

Typical Delaunay meshing algorithms are incremental point
insertion algorithms, in that they begin with empty surface
and volume Delaunay triangulations, and construct a refined
mesh M(Q) of a domain Q by inserting new vertices one-
at-a-time into both the surface and/or the volume. After a
new vertex v is added into M(Q), the Delaunay property
of the mesh is restored by first removing tetrahedra whose
open circumspheres contain (or conflict with) v, and then
replacing them with tetrahedra which are Delaunay with
respect to v and to all existing vertices in M (Q).

The two most common algorithms for maintaining the De-
launay property of an initial Delaunay tetrahedralization af-
ter inserting a new point are the flip [14, 12] and Bowyer-
Watson [4, 21] algorithms. We have chosen the Bowyer-
Watson algorithm as the basis of our parallel refinement al-
gorithm, as it is particularly amenable to parallelization—
more so than flip based algorithms. A careful implemen-
tation of the Bowyer-Watson algorithm can be more effi-
cient than a comparable implementation of a flip based al-
gorithm, because fewer floating—point calculations are re-
quired [3].

The sequential Bowyer-Watson algorithm generates a new
Delaunay tetrahedralization 7;4+1, given an initial Delaunay
tetrahedralization 7; and a new point p;+1 ¢ 7; to add to
Ti. This process is normally implemented in four steps (see
fig. 1 for a 2D example):

1. Point location: Find an initial tetrahedron ¢ € 7; that
conflicts with p;41.

2. Cauwity search: Perform a depth first search from ¢ over

Initial Mesh, Insertion of p; and
To Computation of C(p1)

N\ 7/ N\ 7774

Ball of New
Elements, B(p1)

Figure 1: The Bowyer-Watson algorithm in R°:
7'i+1 = (7'1 - Cm+1) U Bm+1 .

the faces of 7; to compute Cy,,, C 7;, the set of all
tetrahedra which conflict with p;41 (C is the inser-
tion polyhedron or cavity of piy1).

Pit1

3. Cauity deletion: T; = Ti—Cp,,, leaving a face bounded

polyhedral “hole” in 7;. Let H
in the boundary of the hole.

p;41 De the set of faces

4. Cavity retriangulation: Bp, ., = {t,Vf € Hp,,,, t =
pi+1 U f}; then Tipr = Ti U BPi+1'

A depth first search of 7; can be used to find the tetrahe-
dra in Cp,,, which conflict with p; 41, given an initial tetra-
hedron, ¢, as the first tetrahedron in the search. For our
Delaunay mesh refinement algorithm, point location is not
required to find ¢, since we place all new vertices on (or near)
the circumcenter of a known tetrahedron.’

Because of the Delaunay property, each tetrahedron in Cp,
must share a face with at least one other tetrahedron in
Cpi4.- Tetrahedra not in Cp, , which share at least one face
with a tetrahedron in Cp,,, are called closure tetrahedra.
The union of these closure tetrahedra and Cp, , is called
the cavity closure, épi+1~

Generating the new tetrahedra in By, , is data structure
dependent; a straightforward algorithm can be used to walk
the faces of H,,,, and connect each to p;41 [3]. Note that
it is this bulk update property of the Bowyer-Watson algo-
rithm that makes it attractive for parallel Delaunay mesh
generation (see §4).

2. MESHINITIALIZATION AND SEQUEN-
TIAL DELAUNAY REFINEMENT

We describe next a sequential procedure which can generate
an initial mesh suitable for input to our parallel Delaunay
refinement algorithm. Then, before moving on to develop
our algorithm, we prove that the base sequential algorithm,

!This is also a property shared by existing Delaunay refine-
ment algorithms. With a flip-based algorithm point location
would still be necessary, although the search is bounded by
the size of Cp, ;.

SeqRefinement (fig. 2), from which our parallel algorithm
is derived, both terminates and outputs tetrahedra with the
required bounds on radius edge ratio. Shewchuk [17] has de-
veloped a sequential algorithm similar to the one presented
here.

2.1 |Initializing a Mesh for Parallel Delaunay
Refinement

Let d be the minimum distance between any two unrelated
components in 89, times 1/4/2. Then, input to our parallel
algorithm is a Delaunay mesh, M,(Q), consisting of the
surface triangulation D, and the tetrahedralization 7,, with
the following properties:

1. The segments and facets in 9 appear as a union of
subsegments and subfacets in D, and 7.

2. The length of each subsegment in D, is less than 2d.

3. The circumradius of each subfacet in D, is less than

dv/2.

M, = Mo(Q) can be constructed with the following proce-
dure:

1. Segment refinement: refine each segment S € 0Q2 by
subdividing subsegments on .S until the length of each
subsegment on S is less than 2d.

2. Facet refinement: for each facet F' € 012, let D be a
Delaunay triangulation of the vertices of F' and the
vertices added onto the segments bounding F'. Then,
insert the circumcenters of subfacets until the circum-
radius of each subfacet on F is less than dv?2. Re-
move all subfacets in D which lie outside of F', and let
D, =D, U D.

3. Mesh initialization: add the vertices in D, by Delau-
nay insertion into an empty Delaunay tetrahedraliza-
tion, 7,. Then, remove all tetrahedra in 7, which lie
outside of Q.

The output of this initialization algorithm is M, a uniform-
density conforming Delaunay mesh. It is clear from the defi-
nition of d that M, may contain many more tetrahedra than
necessary to fill Q2. However, we expect that an order of
magnitude more tetrahedra will be generated by our parallel
refinement algorithm, thus lessening the effects of an overly
dense initial mesh (see §5).

3. A SEQUENTIAL DELAUNAY REFINE-
MENT ALGORITHM

Our sequential refinement algorithm (fig. 2) depends upon
a constant h, 0 < h < d. The idea here is that d is a rela-
tively large value used during initialization to build a coarse
mesh suitable for the initial partitioning of the mesh among
parallel processors, while the constant h is a smaller value
specifying the minimum element-size that the user desires
in the final mesh.

SeqRefinement(M,)
Input: M,, Delaunay mesh generated by initialization al-
gorithm
Output: M(Q), refined Delaunay mesh such that Vi €
T(Q),ratio(t) < 2
Let M=M,, T =7,,and D =D,
while 3t € T 3: ratio(t) > 2 do
Refine(t)

end while

Refine(¢)

p « circumcenter(¢)
Cp < {t,t € T and t conflicts with p}
Retriangulate(¢,p,Cp)

Retriangulate(é,p,Cp)

if (¢ is a subfacet or tetrahedron) and p encroaches sub-
segment s € C, then

Refine(s); Return.
else if ¢ is a tetrahedron and p encroaches a subfacet
f €C, then

f« m(mzf)(f € D) that p encroaches
radius

Refine(f); Return.
end if

Retriangulate C, in T
if ¢ € D then Retriangulate C, N D in D

Figure 2: A parallelizable sequential Delaunay mesh-
ing algorithm: no subsegment or subfacet is en-
croached upon before or after a new vertex is in-
serted; hence, tetrahedra can be refined in arbitrary
order.

The value of the constant h is determined either by adding
additional vertices into 092 to decrease the distance between
unrelated components, or by specifying a size function over
Q to control the maximum size of tetrahedra. A slight modi-
fication to the algorithm is required to make sure that tetra-
hedra larger than the value of the size function are refined.

Our algorithm can potentially introduce slivers (flat ele-
ments of near-zero volume) into the mesh. The best strategy
to produce 3D Delaunay meshes with bounded aspect ratio
and without slivers is a subject of ongoing research (see, for
instance, [10] where one such strategy is discussed).

To show that this algorithm is correct, we prove by induction
that the algorithm has the following properties: 1) the algo-
rithm terminates with the length of the smallest edge greater
than h, and 2) when the algorithm terminates, ratio(t) < 2
for every tetrahedron in the mesh.

Consider the following invariants:

1. Subsegments and subfacets in D are unencroached in
T before each new vertex is added to M.

2. Each refined subsegment has length greater than 2h.

3. Each refined subfacet has circumradius greater than

2.

4. Each refined tetrahedron has circumradius greater than
2h.

We will prove SeqRefinement is correct by showing that
these invariants hold throughout the course of the algorithm.
First, note that each of these invariants holds at the start of
the algorithm.

LEMMA 1. In algorithm SeqRefinement, the above invari-
ants hold after each iteration through the main loop.

Proor. Each time a new vertex other than a subsegment
midpoint is inserted, a check is performed to see if it en-
croaches upon a subsegment or a subfacet (in the case of a
tetrahedron circumcenter). The angle bounds and the value
of d have been chosen to ensure that a new subsegment mid-
point can never encroach upon an existing subsegment or
subfacet. Further, when a subfacet circumcenter is added,
the new vertex can never encroach upon an existing sub-
facet without also encroaching upon a subsegment. This
would cause the subsegment to be refined instead of adding
the circumcenter to the mesh. Therefore, it is impossible
to add a new vertex that encroaches upon a subsegment or
subfacet, so the first invariant holds.

For the remaining invariants, consider what happens at the
first occurrence of a failure.

Assume the first failure occurs when some subsegment (say
s) with length 2h or less is refined. Because of the angle
and distance restrictions, this can occur only if there is an
encroaching vertex v that is the circumcenter of a subfacet or
a tetrahedron. 7 is Delaunay, so the open sphere centered at
v cannot contain the endpoints of s. But, the radius of this
sphere is greater than hv/2, so the closed diametral sphere
of s cannot contain v. This is a contradiction.

Next, assume the first failure occurs when some subfacet
(say f) with circumradius h+/2 or less is refined. Note that
f must be encroached upon by the circumcenter (say v)
of some tetrahedron with circumradius greater than 2h to
have been refined. Because T is Delaunay, the open sphere
centered at v cannot contain the vertices of f, so the vertices
of f are farther than 2h from v. Hence, v can be within the
closed equatorial sphere of f only if f is an obtuse triangle.
If this occurs, then the subfacet over the obtuse edge of f is
a larger radius subfacet which is also encroached upon by
v. But, this is a contradiction, since the algorithm refines
the subfacet with the largest circumradius encroached upon
by v.

Finally, assume the first failure occurs when some tetrahe-
dron (say t) with circumradius 2h or less is refined. The
radius edge ratio of ¢ must be 2 or more to have been re-
fined, so the length of the shortest edge (call it e) of ¢ is less
than h. Since this is assumed to be the first failure of the
invariants, every edge in the current Delaunay triangulation
is the result of refining a subsegment of length greater than
2h, a subfacet of circumradius greater than hv/2, or a tetra-
hedron of circumradius greater than 2h. Thus the edge e
must have length greater than h. This is a contradiction.

Since any failure of the invariants leads to a contradiction,
the invariants must hold throughout the execution of the
algorithm. [

THEOREM 1. Algorithm SeqRefinement terminates, and
M has the following properties:

1. The length of every edge in M 1is greater than h.

2. The radius—edge ratio of every tetrahedron in M is less
than 2.

PROOF SKETCH. From Lemma 1, we know that no two
vertices of the mesh are ever closer than h. Since only finitely
many such vertices can be placed within a finite volume,
the algorithm must terminate. It’s clear from the algorithm
that termination implies that the radius edge ratio of each
tetrahedron in M is less than 2. []

REMARK 1. The correctness of SeqRefinement does not
depend on the order in which newly inserted vertices are
added into the mesh.

This property makes Algorithm SegRefinement relatively easy
to parallelize, since any two cavities which do not intersect
can be retriangulated concurrently without invalidating the
proof of correctness of SeqRefinement. We next develop our
parallel refinement algorithm, which is straightforward both
in theory and in practice.

4. PARALLEL DELAUNAY REFINEMENT

Our parallel refinement algorithm is designed for practi-
cal use, so we impose few restrictions on the programming
model adopted in an implementation. We assume a relaxed,
asynchronous programming model, in which each processing
element (PE) of the parallel system operates independently
on distributed data structures to accomplish the common
goal of generating a refined, guaranteed quality Delaunay
mesh.

We assume the following properties of the application run—
time environment:

1. The message passing model is that of one-sided, asyn-
chronous remote procedure calls as supported by Ac-
tive Messages [20], or DMCS [1], for example.

2. Application data structures in the memory of a sin-
gle PE are modified sequentially by any preemptive or
non-preemptive > thread executing in that PE.

We will also assume that an initial mesh, M, = M (), has
been generated, and it has the properties described in §2.1.
We also require that M, be partitioned and distributed to
the PEs in the parallel system, as described below:

2If non preemptive threads are not available, then the re-
quired state of suspended operations can be stored explicitly,
and the functionality split into several procedures to emulate
the process of saving and restoring thread state.

Figure 3: Two overlapping cavities are retriangu-
lated, which results in a non—simplical mesh.

1. Initial domain decomposition: M, has been element—
wise partitioned into N submeshes |J,_, Sk = M.,
and distributed to P® PEs, where submesh S is re-
fined in the memory of PE;. Subfacets and tetrahedra
in M, are assumed to be owned by a single PE during
the computation, although ownership may change as
the mesh is refined. Each subfacet and the tetrahedron
that contains it are always owned by the same PE.

2. Submesh connectivity: if Z; , = S; NSy # 0, then S;
and Sy, are adjacent. If Z; ; contains faces, then S; and
Sk are neighbors, T; i is an interface surface, and faces
in Z; » are interface faces. Z; is the set of all interface
faces in S;. We assume that vertices, edges, and faces
in Z; are replicated in any submeshes that contain
them. Also, if S; is a neighbor of Sk, then each face
f € T; NZ; i contains a reference to Sk.

The interface surfaces (or just interfaces) induced by parti-
tioning M, may be discontiguous, and are allowed to change
as new vertices are added into the mesh. Further, interfaces
do not constrain the submesh tetrahedralizations or surface
triangulations; new vertices inserted into one submesh can
affect the tetrahedralization or surface triangulation in an-
other submesh. This flexibility is both a fundamental basis
for the quality guarantees of our parallel refinement algo-
rithm, and a useful tool to help load balance the refinement
process [7].

We also allow new vertices to be concurrently inserted into
the distributed mesh by the PEs in the computation. More
importantly, we allow the cavities for these new vertices to
be computed and retriangulated concurrently, as long as
their closures (§1.2) do not share tetrahedra. A setback
occurs if two or more cavities share tetrahedra. Setbacks
introduce additional overhead not present in a sequential
algorithm (§5), since they hinder the progress of the algo-
rithm, and cause computation to be restarted.

Concurrency introduces additional theoretical and practical
problems, which we describe in the following sections.

4.1 Theoretical Problems Due to Concurrency
A distributed cavity may contain conflicting tetrahedra from
many submeshes; while a cavity which contains tetrahedra
in one submesh is local. Retriangulating any local or dis-
tributed cavity which intersects another cavity can result in

31t is also possible to over-decompose M, by distributing
N > P submeshes to P PEs without invalidating our algo-
rithm.

Figure 4: Two neighboring cavities are retriangu-
lated, which results in a non—-Delaunay mesh.

a non simplicial or non Delaunay mesh. Consider the two
following scenarios, in which ¢ is a tetrahedron and f is a
face:

1. Owerlapping cavities: 3t € Cp N Cy; if the cavities are
retriangulated, the result will not be simplicial, since
some new tetrahedra will be pierced by edges (a 2D
example appears in fig. 3).

2. Neighboring cavities: 3f € H, NHg; if the cavities are
retriangulated, one or more faces in the boundaries of
the cavities may conflict with p and ¢. (a 2D example
appears in fig. 4).

From the definition of the closure, it is clear that the clo-
sures of two overlapping or neighboring cavities must also
overlap. We can therefore avoid both problems and ensure
a correct mesh by preventing the closures of concurrently
computed cavities from overlapping, as the following lemma
demonstrates.

LEMMA 2. Let T be a Delaunay tetrahedralization, and
let p and q be two vertices, such that p # q and p,q & T.
If Cp and Cq do not overlap, then the tetrahedralization T
resulting from retriangulating Cp and Cq 4s Delaunay.

ProoOF. Clear from the Delaunay property of 7. [l

REMARK 2. If the Bowyer—Watson algorithm is used to
retriangulate Cp and Cq, then retriangulating Cp, and Cq re-
sults in the same tetrahedralization regardless of the order of
retriangulation.

This follows from Lemma 2.

All that remains is to devise a strategy to prevent the clo-
sures of two concurrently computed cavities from overlap-
ping. A straightforward solution is to lock tetrahedra in the
closure of a cavity as the cavity is being computed. Then,
any other cavity search which tries to acquire a locked tetra-
hedron should be terminated, the offending cavity should be
discarded, and the PE initiating the search should consider
a new vertex to insert.

This simple locking scheme ensures that the closures of any
two retriangulated cavities do not overlap. Therefore, from

scatter—

Breadth—first parallel search:
gather phases of a breadth—first parallel search for
the subcavities A-E. Shaded faces are the marked
interface faces. The shaded face between D and E
is interior to the cavity, and does not cause an ad-
ditional scatter—gather phase to be executed.

Figure 5:

Lemma 2, it is clear that retriangulating this cavity concur-
rently with any other non-overlapping cavities results in a
Delaunay tetrahedralization.

Since the closure is computed as a side effect of the depth
first cavity search, this strategy introduces little additional
work into our parallel algorithm. It is also straightforward
to compute a distributed cavity by parallelizing the depth
first search used in the sequential Bowyer-Watson algorithm,
which we describe next.

4.2 Computing a distributed cavity

Due to the decomposition of M,, tetrahedra which conflict
with a new vertex inserted into the mesh may be contained
in many submeshes. Let v be a new vertex inserted into
submesh S;. If H,NZ; = 0, then the cavity C, C S; is local.
Otherwise, C, is distributed, and each subcavity kc Cy
with boundary H* is contained in some submesh S;. Note
that ¢* may contain only conflicting tetrahedra if #* C 7.

From the properties of the cavity, C, and its subcavities are
face connected, so at least two subcavities ¢’ and ¢* in C,
share one or more interface faces (i.e. H/ NH* C T;,).
A parallel graph search algorithm can therefore be used to
compute C, by visiting the interface faces which connect the

J

subcavities of C,.

The first computed subcavity ¢/ ina parallel graph search to
compute a distributed cavity is the root subcavity, which can
be computed by sequential depth—first search in S;. Each
other subcavity ¢" is a child of the root subcavity, and can be
computed by sequential depth first search from each tetra-
hedron in S containing an interface face in Z; N HE.

For each child kc Co, HonHE C Zj 1 for some subcav-
ity ¢/ C C,, so a message containing the faces in T, N H*
can be sent from PE; to PE; to prime the search for c*.
Sk may contain several subcavities, each of which must be
computed to ensure the Delaunay property of the mesh after
retriangulating C,.

Let v be a new vertex inserted into submesh Sy, and assume
that C, is distributed. The parallel search to compute C, can
be either depth—first or breadth—first over the subcavities
to be located. We have chosen to implement the following
breadth—first parallel search (fig. 5); assume j = 0 to start,
and let ¢° be the root subcavity in Sp:

Breadth—first parallel search: Execute the following in

S

0

Figure 6: Invalid submesh connectivity: triangles in
two neighboring cavities are migrated, which inval-
idates the connectivity information in the shared
edge.

PE()Z

1. For each Sy, 3: Zj NH® # 0, compute in PE, each
subcavity chC S sharing an unmarked interface
face in Z, N HC.

2. Mark in H#° and Z, the interface faces in H°NH*.
Then, if Sy, # So, copy the conflicting tetrahedra
CF into ¢°, and update H°.

3. If no new subcavities were found, then the search
is terminated. Otherwise, continue at (1) in PE.

. . P) . .
Upon termination, C, = ¢, and contains the union of all

subcavities containing tetrahedra conflicting with v. The
conflicting tetrahedra in C, are copied into ¢” to find inter-
face faces in the distributed cavity which have not yet been
marked. If C, does not overlap any other cavity closure,
Cy» can be inserted into Sy and sequentially retriangulated.
Then, the conflicting tetrahedra in participating submeshes
can be removed, and the interfaces which changed by mi-
grating tetrahedra can be updated.

4.3 Practical Problems Due to Concurrency
There are two practical problems which still remain to be
solved:

1. Maintaining submesh connectivity: if the boundaries
of two cavities intersect at one or more interface faces,
reference information in the faces could be updated
incorrectly when tetrahedra in the cavities are mi-
grated by the breadth first parallel search algorithm
(see fig. 6).

2. Preventing live-lock: our simple strategy of locking
tetrahedra to prevent invalid sharing can result in live-
lock, if two PEs repeatedly attempt to insert new ver-
tices whose cavities overlap close to the submesh in-
terfaces.

The submesh connectivity problem is really a special case
of the neighboring cavities problem, which we have already
solved. Live-lock can be prevented by setting a limit on
the number of times a vertex insertion with the same vertex
is attempted. If this threshold is reached, then the PE at-
tempting to insert the vertex can be paused for some random
length of time, which should be longer than the round-trip
time of a message, before attempting to insert the vertex
again. Alternatively, another vertex could also be inserted,

ParRefinement(M,)
Input: U,[::l Sk, submeshes of M,.

Output: M(Q), refined Delaunay mesh such that V¢ €
T(Q),ratio(t) < 2
On each PEg:
Let £ be list of to-be-refined tetrahedra.
Let @ be list of outstanding refinement threads.
loop
Poll network for new messages.
Yield to threads in Q.
t + L.remove_head()
Q « thread(Refine(t))
if |Q| =0, |£] =0, and all PEs are done then Exit.
end loop

Refine(¢)
p « circumcenter(¢)
C, + breadth-first-parallel-search(p, ¢)
if C, = 0 then
if ¢ is a tetrahedron then L.append(¢)
Return.
end if
Retriangulate(,p,Cp)
for all new tetrahedra ¢ 3: ratio(t) > 2 do L.append(t)

Figure 7: Guaranteed—quality parallel Delaunay re-
finement: this algorithm terminates, and Vt € M(Q),
ratio(t) < 2.

if it has not violated the threshold. Since it is improbable
that two PEs (or more) will repeatedly choose the same time
to pause, live-lock is prevented.!

4.4 AParallel Delaunay Refinement Algorithm
Figure 7 presents our parallel refinement algorithm, Par-
Refinement. breadth-first-parallel-search, as described in §4.2,
returns the possibly distributed cavity C,. If C,, overlaps any
other closure, then this procedure returns an empty cav-
ity. Otherwise, breadth-first-parallel-search ensures that Cp
is contained in Sy, and that any copies of tetrahedra in Cp
have been removed from other submeshes. Note that closure
tetrahedra do not need to be removed, and can be used to
help update the submesh interfaces.

Assuming that a live-lock prevention mechanism has been
installed into the algorithm, the following theorem shows
that ParRefinement is correct.

THEOREM 2. Algorithm ParRefinement terminates, and
M has the following properties:

1. The length of every edge in M 1is greater than h.

2. The radius edge ratio of every tetrahedron in M is less
than 2.

ProoF. By Remark 1, if no two cavities are retriangu-
lated concurrently, then M has the desired properties. For

It may be worthwhile to note that we have not encountered
live-lock during the development of our code.

Figure 8: Experimental domains: (a) cube-in-cube,
(b) tee

any two concurrently computed cavities which do not over-
lap, such as those returned from breadth first parallel search,
Remark 2 ensures that the resulting mesh is the same as
if they were retriangulated sequentially. This implies that
Remark 1 is valid for concurrently retriangulated cavities;
therefore, by construction, ParRefinement is correct. [

5. OVERVIEW OF PERFORMANCE

We have chosen two model problems (see fig 8): (1) a sim-
ple cube with a suspended cubical void (cube-in-cube), and
(2) a half-tee brace with theoretically inadmissible angles
in its boundary (tee). Our parallel data were collected on
a cluster of 16 SPARC Ultra2 333MHz machines, each with
512MiB RAM, and connected by a 100MiB/s fast ethernet
switching fabric. Sequentially generated meshes were cre-
ated on a 450MHz SPARC Ultra-80 with 4GiB RAM, con-
nected to a remote file server via 100MiB/s fast ethernet.
More detailed and specialized data pertaining to our par-
allel Bowyer-Watson kernel can be found in our companion

paper [8].

The initial meshes passed as input to our implementation
of ParRefinement (§4) contained about 100, 000 tetrahedra,
and were partitioned with sequential Metis [13]. In each
experiment, we also specified a constant size function which
allowed us to control the number of tetrahedra in the refined
mesh. The mesh output by ParRefinement were uniform—
density meshes containing 1 to 4 million tetrahedra with
circumradius to shortest edge ratio less than 2.

Dihedral angle data for elements in a 1 million element mesh
of the tee appears in fig. 9. In this particular experiment,
the radius edge ratio of every tetrahedron ranged from .61
to 1.5. This plot shows dihedral angles of tetrahedra both
interior to and near the boundary of the domain. Near the
boundary, element dihedral angles are between 1° and 179,
while in the interior, element dihedral angles are between (0°
and 179° (slivers appear even in a mesh for this relatively
simple geometry).

Note that our experimental implementation is less efficient
than possible, as it generates only about 1000 tetrahedra
per second per processor. An optimized implementation
could improve this by an order of magnitude or more (see
Bourachaki et. al [3], for example).

Table 1 demonstrates how well our algorithm tolerates the
long, variable, and unpredictable latencies due to the com-

Dihedral Angle Distribution
“TEE” // 16 PEs // 1M ELEMENTS

50 T T
L Boundary Elements B
= = |Interior Elements ,
40~ A B
~ | [|
2ol I _
x 30 1 \
=~ \ 1
) /i [|
= [r N 1 !
=20}~ /o | \ e
u / 1 I !
[m] | / \ I \ 4
* 14 \ | \
/ \ | \
10~ / N -
o / \ 1 \
L - (| \ b
- - \ N «
0 - | L
0 30 60 90 120 150 180

ANGLE (DEGREES)

Figure 9: Dihedral angle distributions: dihedral an-
gle distributions of elements in a 1 million element
mesh of the tee geometry on 16 PEs. Dihedral an-
gles near the boundary range from 1° to 179°. In the
interior, slivers appear. As a result, dihedrals range
from 0° to 179°. .61 < ratio(t) < 1.5 for all tetrahedra
in the mesh.

munication overheads arising from concurrently inserting
new vertices into the mesh. It is very difficult to compute the
actual latency of each message incurred during distributed
cavity searches. However, we can measure the amount of
time spent by each PE to compute and retriangulate cavi-
ties while the PE contains distributed cavity search threads
which are blocked on communication.

Further, setbacks on a PE can only occur in the presence of
blocked distributed cavity search threads. We can therefore
calculate how effectively each PE utilizes otherwise wasted
time by computing the ratio of useful time to total work time
(the sum of useful time and setback time). In our table, this
value appears as the average percent of overlap, or latency
tolerance. We consider the useful work to be the total time
spent by a PE in computing and retriangulating cavities,
including those cavity searches which complete, but result
in encroached subsegments and/or subfacets. Setback time
is the total time spent by a PE in computing and destroying
cavities which overlap other (distributed) cavities.

Tt is clear from this data that our algorithm tolerates 80% or
more of the communication latency in our experiments, but
not without the significant additional cost of frequent net-
work polling indicated in the final column of tab. 1. Because
the arrival of messages generated by the breadth—first par-
allel cavity search algorithm is unpredictable, the network
must be polled frequently to reduce the lifetime of cavity
search threads blocked on communication. In turn, this re-
duces the likelihood of incurring a setback due to locked
tetrahedra, and hence reduces the time spent handling set-
backs, at the expense of excessive polling.’ The last column

®Executing remote service requests asynchronously requires
fine-grain locking of mesh data structures, which can have
non obvious and detrimental effects on performance.

Q Mesh Execution Completed Masked Time Setback % Latency Poll Time
Size Time Cav Time Local (Dist) Time Tolerance (Excess)
cube 1M 53.9 26.6 16.1 (6.0) 2.7 89.1% 17.4 (9.5)
i 2M 92.9 52.6 29.1 (11.1) 4.8 89.4% 22.2 (8.6)
cube 4M 184.4 105.7 53.0 (20.9) 10.7 87.3% 46.8 (21.8)
1M 45.3 24.6 11.9 (2.9) 2.5 85.6% 13.4 (8.9)
tee 2M 82.4 48.7 19.8 (4.5) 46 84.2% 20.1 (11.2)
4M 159.3 91.0 30.9 (8.5) 9.6 80.4% 40.3 (25.7)

Table 1: Average latency tolerance for cube-in-cube and tee: run—time data for the worst latency—tolerant PEs
refining the cube-in-cube (top) and tee (bottom) domains on 16 processors of a CoW. Time spent computing
local and (in parenthesis) distributed cavities in the presence of distributed cavities is the masked time.
Percent latency tolerance is the ratio of the masked time over the sum of the masked and setback times. The
last column shows that excessive polling is a significant source of wasted time. For the 4 million element tee,
21.8s out of 46.8s (46%) was wasted. All times are in seconds.

of tab. 1 shows the total amount of time spent polling on
the PE, along with the time wasted in excessive polling.

Even with this additional overhead, our experimental im-
plementation can generate and place meshes 6 times faster
than traditional techniques, as shown in tab. 2. This ta-
ble depicts traditional versus parallel performance data for
1 to 4 million element meshes of the cube-in-cube domain on
16 PEs. For consistency, the sequential meshes were gener-
ated with SeqRefinement The parallel mesher was initialized
with a 100, 000 element mesh, also generated by SegRefine-
ment, which was partitioned by Metis [13], and distributed
via NFS to the compute nodes.

6. CONCLUSIONS

We have described a provably correct (albeit very restricted)
parallel Delaunay mesh refinement algorithm, which is prac-
tically efficient and latency tolerant due to the fine—grain
concurrency afforded by decomposing an initial mesh and
independently refining the submeshes. Our algorithm is one
of only a handful of available techniques for generating, plac-
ing, and refining a distributed mesh.

An experimental implementation of our algorithm has been
shown to mask more than 80% of the time spent in blocking
on communication requests, although the cost is increased
communication overhead, primarily due to polling the net-
work to ensure timely reception of messages. Even so, our
implementation has been shown to create and place large
meshes up to 6 times faster than a typical approach to gen-
erating a distributed mesh.

7. FUTURE WORK

In order to weaken the angle restrictions on the domain
boundary (and maintain a similar proof structure), we need
only design an algorithm which preserves the correctness
of Remark 1 and Lemma 2. By ensuring that two cavities
can be retriangulated in arbitrary order (Remark 1), our se-
quential proof of correctness can be applied without change
to a parallel refinement algorithm which only retriangulates
non-overlapping cavities (Lemma 2).

For example, it is possible to modify our algorithm to weaken
the angle restriction for incident segments. The refinement
of an encroached subsegment can trigger the refinement of

possibly (but not practically) many other subsegments which
would directly or indirectly become encroached due to in-
serting the subsegment midpoint. It is straightforward to
show that no encroached subsegments will remain in the
mesh by retriangulating en masse all cavities resulting from
the midpoints of these encroached subsegments. If any cav-
ity could not be completed due to locked tetrahedra, then all
of the cavities must be destroyed (en masse).® This proce-
dure would allow arbitrarily ordered subsegment refinement
while preserving the invariant of unencroached subsegments.
Preserving the invariant of unencroached subfacets is not so
straightforward, however; this is the subject of current in-
vestigation.

Data not presented here, but which will appear in the fi-
nal version of this paper, shows that our algorithm offers
fixed speedup proportional to log P, and scalable speedup
proportional to P, where P is the number of PEs. As ex-
pected, the performance of our algorithm depends heavily
upon the volume of messages exchanged by the PEs. We
are therefore actively studying the difficult problem of tol-
erating long, variable, and unpredictable latencies due to
concurrency, without introducing the large communication
overheads currently incurred by the algorithm. These stud-
ies include methods to schedule vertex insertions so as to
prevent overlapping cavities [6].

8. ACKNOWLEDGMENTS

This work was performed using computational facilities at
the College of William and Mary which were enabled by
grants from the National Science Foundation (ETA-9977030)
and Sun Microsystems (SAR # EDU00-03-793, EDU-02-Q1-
197).

9. REFERENCES
[1] K. Barker, N. Chrisochoides, J. Dobbelaere, D. Nave,
and K. Pingali. Data Movement and Control
Substrate for parallel, adaptive applications. Accepted
to Concurrency Practice and Ezxperience, 2001.

[2] G. Blelloch, J. Hardwick, G. Miller, and D. Talmor.
Design and implementation of a practical parallel
Delaunay algorithm. Algorithmica, 24:243 269, 1999.

This is a variant of an idea Shewchuk proposed [18] in the
context of refining a domain with small angles.

Mesh Size Mesh Gen. (I/O) Part. (I/O) Total Par. Time Improvement

M 147 (37)
2M 305 (82)
AM 650 (175)

14 (75)
33 (158)
75 (379)

273 81 3x
578 120 4x
1278 211 6x

Table 2: Parallel mesh generation vs. traditional approach for cube-in-cube: 16 processor CoW experiments
indicate up to 6x speedup for a 4 million element mesh. The time measured for the traditional approach
includes the sequential mesh generation, partitioning, and I/O (read/write) times. The time measured for
parallel mesh generation includes 100,000 element sequential mesh initialization, partitioning, and I/0 time,
and the time spent loading and generating the mesh. All times are in seconds.

[3] H. Borouchaki, P. L. George, and S. H. Lo. Optimal
Delaunay point insertion. International Journal for
Numerical Methods in Engineering, 39, 1996.

[4] A. Bowyer. Computing Dirichlet tessellations. The
Computer Journal, 24(2):162-166, 1981.

[5] P. Chew, N. Chrisochoides, and F. Sukup. Parallel
constrained Delaunay meshing. In Proceedings of 1997
Joint ASME/ASCE/SES Summer Meeting, Special
Symposium on Trends in Unstructured Mesh
Generation, July 1997.

[6] N. Chrisochoides and L. Linardakis. Parallel Delaunay
mesh generation using decoupling zone. To be
submitted.

[7] N. Chrisochoides and D. Nave. Simultaneous mesh
generation and partitioning. Mathematics and
Computers in Simulation, 2000.

[8] N. Chrisochoides and D. Nave. Parallel Delaunay
mesh generation kernel. Submitted to IJNME, 2001.

[9] N. Chrisochoides and F. Sukup. Task parallel
implementation of the BOWYER-WATSON
algorithm. In Proceedings of Fifth International
Conference on Numerical Grid Generation in
Computational Fluid Dynamics and Related Fields,
1996.

[10] H. Edelsbrunner. Geometry and Topology for Mesh
Generation. Cambridge University Press, Cambridge,
England, 2001.

[11] J. Galtier and P. L. George. Prepartitioning as a way
to mesh subdomains in parallel. In Special Symposium
on Trends in Unstructured Mesh Generation.
ASME/ASCE/SES, 1997.

[12] B. Joe. Construction of three-dimensional Delaunay
triangulations using local transformations. Computer
Aided Geometric Design, 10:123-142, 1989.

[13] G. Karypis, K. Schloegel, and V. Kumar. PARMETIS
— parallel graph partitioning and sparse matric
ordering library, Version 2.0. University of Minnesota,
Minneapolis, MN; 1998.

[14] C. Lawson. Software for C1 surface interpolation. In
J. R. Rice, editor, Mathematical Software III, pages
161 194. Academic Press, New York, 1977.

[15] T. Okusanya and J. Peraire. 3D parallel unstructured
mesh generation. In S. A. Canann and S. Saigal,
editors, Trends in Unstructured Mesh Generation,
pages 109 116, 1997.

[16] J. R. Shewchuk. A condition guaranteeing the
existence of higher-dimensional constrained Delaunay
triangulations. In Fourteenth Symposium on
Computational Geometry, pages 76 85. ACM, 1998.

[17] J. R. Shewchuk. Tetrahedral mesh generation by
Delaunay refinement. In Symposium on Computational
Geometry, pages 86-95, 1998.

[18] J. R. Shewchuk. Mesh generation for domains with
small angles. In Sizteenth Symposium on
Computational Geometry, pages 111-112. ACM, 2000.

[19] Y. A. Teng, F. Sullivan, I. Beichl, and E. Puppo. A
data-parallel algorithm for three-dimensional
Delaunay triangulation and its implementation. In
SuperComputing, pages 112-121. ACM, 1993.

[20] T. von Eicken, D. Culler, S. Goldstein, and
K. Schauser. Active Messages: A mechanism for
integrated communication and computation. In

Nineteenth International Symposium on Computer
Architecture. ACM, 1992.

[21] D. F. Watson. Computing the n-dimensional Delaunay
tessellation with application to Voronoi polytopes.
The Computer Journal, 24(2):167 172, 1981.

