NEW APPROACH TO PARALLEL
MESH GENERATION AND
PARTITIONING PROBLEM*

Nikos Chrisochoides!
College of William and Mary, USA

Abstract In this chapter, we present a new approach for parallel generation and
partitioning of 3-dimensional unstructured meshes. The new approach
couples the mesh generation and partitioning problems into a single
optimization problem. Traditionally these two problems are solved sep-
arately with I/O and data movement overheads that exceed 90% of
the total execution time for generating, partitioning, and placing very
large meshes on distributed memory parallel computers. The new ap-
proach minimizes the I/O and data-movement overheads by eliminating
redundant memory operations (loads/stores) from and to cache, local &
remote memory, and discs. Our preliminary results show that the new
approach is nine times faster than the traditional approach for generat-
ing, partitioning, and distributing very large 3-dimensional unstructured
meshes.

Keywords: Parallel mesh generation, Partitioning, Delaunay triangulation

1. INTRODUCTION

Parallel mesh generation is important for three reasons: (1) memory
constrains —the memory capacity of high-end workstations does not
permit the generation of 3-dimensional unstructured meshes with more
than few tens of millions of elements; (2) execution time for partition-
ing (even in parallel) of few tens of millions elements is prohibitively
high —recent advancement in parallel PDE solvers and preconditioners
shifted the performance bottleneck from the solution phase to the mesh
generation and partitioning phases; (3) scalability of adaptive numerical

*Dedicated to John R. Rice on the occasion of his 65th birthday.

T This work was supported by NSF Grants: Career Award #CCR-0049086, CISE Challenge
EIA-9726388, and Information Technology Research grant # ACI-0085969, and the IBM
Shared University Research Program.

simulations —the 1/O overhead between parallel adaptive field solvers
and sequential mesh generators is high despite the recent progress in
parallel I/O hardware and software technology. For example, it took
19.1 hours to generate and partition' a 77 million tetrahedral mesh on
DEC8400 with 7.7 Gb memory. It takes only 6 hours on a 256 node
Cray T3D for executing 40,000 time steps of a parallel explicit wave
propagation code for studying the earthquake-induced dynamics of the
San Fernando Valley in South California [1]

Parallel mesh generation codes should: (i) be efficient and scalable
(ii) be stable —parallel meshes should retain the good quality of the
elements and properties of the sequentially generated meshes and (iii)
re-use scalar codes —in order to leverage the ever evolving and maturing
core scalar meshing techniques.

In this chapter, we present a new approach for developing parallel
mesh generation methods that are stable and efficient. The new ap-
proach improves efficiency by simultaneously generating, partitioning,
and placing the mesh on the nodes of distributed memory parallel com-
puters. We target parallel computers with large numbers of very fast
processors. These parallel computers suffer from very large latency gap
between memory (local or remote) and CPU. Hardware studies show [27]
that for future Teraflops and Petaflops machines this gap will become
even wider. Therefore in order to fully utilize the computational capabil-
ities of these machines we need to develop pure parallel approaches that
minimize data-movement for memory intensive applications like mesh
generation. The new parallel approaches should help minimize or even
eliminate unnecessary and expensive memory accesses to and from cache,
local/remote memory and minimize load imbalances in the system.

In order to identify opportunities for eliminating or minimizing I/O
and overhead due to data movement in the mesh generation process,
first, we study the mesh generation in the context of existing paralleliza-
tion approaches for PDE simulations. Specifically, in Section 2, we iden-
tify the weaknesses of the traditional approach for placing (generating,
partitioning, and storing) large 3D unstructured meshes on parallel plat-
forms for PDE simulations; and then in Section 3, we examine in detail
the steps required to generate 3D unstructured Delaunay meshes. The
careful analysis of both mesh generation and partitioning/distribution
phases leads to a new approach which we describe in Section 4. The new
approach, Simultaneous Mesh Generation and Partitioning (SMGP), is
based on the coupling of the mesh generation and partitioning phases.

IThe I/O time for loading the submeshes onto the 256 nodes of T3D is not included.

In Section 5, we present preliminary data that demonstrate the poten-
tial of the SMGP approach; the SMGP approach is up to nine times
faster than the traditional mesh generation, partitioning, and placement
methods on distributed memory parallel computers. Moreover, our pre-
liminary data indicate that the SMGP approach can generate very good
partitions i.e., submeshes with very small surface to volume ratio (i.e.,
of the order of O(0.01)) and good equi-distribution of elements (i.e.,
imbalance is of the order of O(0.001)).

2. BACKGROUND

There are two approaches for developing scalable PDE solvers: (A)
the decompose and then discretize approach and (B) the discretize and
then decompose approach®. The former class of parallel PDE solvers
can handle mesh inconsistencies on the inter-subdomain boundary, and
thus the parallel mesh generation problem is reduced to a sequential
mesh generation problem. However, the discretize and then decompose
class of parallel PDE solvers use a global mesh which for very large
meshes has to be generated in parallel. Specifically the discretize and
then decompose PDE solvers perform the following steps: (1) discretize
the domain Q using a mesh M, (2) decompose the mesh M into N
submeshes, M;, (see Figure 1) such that M = UN* M;, (3) use a finite
element formulator on each of the submeshes in order to generate in
parallel a distributed linear system of equations (see Figure 1, Right),
and finally (4) solve the distributed linear system in parallel using an
iterative solver —direct solvers are not usually preferred because of fill.
Figure 1 depicts the partition of the mesh M and the structure of the
global algebraic system for a specific indexing® of the unknowns.

Parallel iterative solvers (step 4) are computation intensive. Each pro-
cessor P; computes the unknowns z; of the linear subsystem A;z; = b;,
communicates with other processors each time it needs nonlocal degrees
of freedom from the outer-interface nodes, edges or faces (see Figure 1,
Right), and synchronizes with the rest of the processors when global
data are needed. Thus, the execution time, Tsyper 1S given by:

Tsotver = lléliaé}%{z—'i,calc + Ti,commun + Ti,sync} (1)
assuming that numerical calculations and network latency overlap. Equa-
tion (1) is particularly relevant for the loosely synchronous class of iter-

2Professor John Rice suggested this taxonomy in late 80’s
3For each submesh M;, first, we index all the nodal degrees of freedom (dof) that correspond
to the interior mesh points or edges of M, then we index all the dof on inner interfaces, and
at the end we index all the dof on the outer interfaces [2].

DOMAIN
#1

A

DOMAIN
#2

Ay

DOMAIN
3

A
3

DOMAIN
“

Ay

LINK ¢4 INTERFACES
UNK C2 M
s by
LNK Cy As

UNK Cy

Quter interface nodes for the domains D1 and D2

Figure 1 Left) 4-way mesh partition. Right) Global Linear System of Equations that
corresponds to a 4-way partition of a mesh

ative solvers which are widely used in large scale PDE simulations. In
the loosely synchronous model, computations are carried out in phases.
Each phase consists of computations on the local linear subsystem fol-
lowed by interprocessor communication for nonlocal data [13]. The exe-
cution time, Topper, Of parallel iterative PDE solvers is minimized when:
(1) the processors’ workload (calculation and communication) is evenly
distributed and (2) communication (of nonlocal unknowns) and synchro-
nization (of global parameters) overheads are minimized.

The problem of finding mesh distributions that minimize Tsyper iS
a difficult optimization problem and many partitioning heuristics have
been proposed for finding good suboptimal solutions. The partitioning
heuristics are classified into two categories: (A) global or direct meth-
ods [26, 15] and local or incremental methods [4, 18]. Global or direct
heuristics are successful in solving the load-balancing problem, for static
PDE computations. However, they are not so efficient for adaptive PDE
computations because they require a global knowledge of the mesh-graph
(eg. the element-dual graph) which changes any time h-refinement is
performed. In addition, some of these methods, at least those based on
spectral techniques like Recursive Spectral Bisection (RSB), are sensi-
tive to small perturbations in the graph (characteristic of h-refinement
methods), and often lead to heavy data migration [30, 28].

Incremental partitioning methods, on the other hand, start with an
initial partition and then iteratively improve it by using profit func-
tions [23] that guide the optimization process. Incremental methods are
easy to parallelize and they are scalable. In [10] the RPI group has shown

that incremental methods are very successful in load-balancing the com-
putation of parallel adaptive PDE solvers. The incremental partitioning
methods like GGP [4] and PGK [18] have been studied extensively dur-
ing the last ten years. Today, in software packages such as Chaco [15]
and Metis [18], one can find very efficient implementations of incremen-
tal methods for the solution of the graph partitioning problem. Table 1
shows that incremental methods based on local optimization techniques
are as good as global partitioning methods in terms of equi-distribution
and quality of separators. Sequential implementations of both global and
incremental methods yield partitions with very good balancing with re-
spect to the number of elements per submesh (equi-distribution). How-
ever, the incremental methods independently of the implementation are
an order of magnitude faster than the global methods (see Table 2). We
adopt, for simultaneously solving the parallel mesh generation and par-
titioning problem, the basic optimization techniques used in incremental
methods. In the next section we describe these techniques.

Table 1 Quality of separators of a global RSB method from Chaco and incremental
PGK method from Metis. The quality of separators is measured in terms of the
number of faces on the largest separator, for a 16-way partition of 200K and 500K
element meshes. The numbers in parenthesis depict another measure, the largest
surface to volume ratio of faces among the 16 submeshes.

Mesh Size RSB PGK
200K 1836 (.036) 1629 (.032)
500K 3047 (.024) 3246 (.026)

Table 2 Time in seconds for a 16-way partition of 200K and 500K size meshes using
RSB from Chaco, PGK, and parallel PGK from Metis and Parallel Metis respectively.

Mesh Size RSB PGK Parallel PGK
200K 65 4 3.2
500K 164 11 3.4

2.1. INCREMENTAL METHODS

A typical formulation of an objective function that represents the
computation and communication costs in equation (1), for a parallel

iterative PDE solver over a P-way decomposition of a mesh M can be:

OFiyy = max (W (m(M)) + 3 Clm(M).m(M;)} ()

M; €rM;

where m : M; — P;,1 <1 < P is a function that maps the submeshes
M; to the processors P;, W (m(M;)) represents the computational load
of the processor m(M;) per iteration, W (m(M;)) is proportional to the
number of elements (or degrees of freedom) in M;, C(m(M;), m(M;))
represents the communication cost per iteration between the processors
m(M;) and m(M;), and Ky is the set of submeshes that are adjacent
to Mz

OF}y, approaches its minimum when the computation load W (P;) is
almost evenly distributed across the processors and the communication
cost of the processors is minimum. Clearly, such conditions are also nec-
essary for minimizing Tsoppe,. Note that the synchronization term (Ty.c)
of Tsoper in equation (1) is not explicitly reflected in O Fyy,. The synchro-
nization cost is a nonlinear function of communication, computation, and
overlapped communication and computation. Another term that is not
explicitly reflected is the network or bus contention; this term appears
implicitly in the communication term, ZM]‘GHMZ- C(m(M;), m(M;j)). The
network contention, among other factors, depends on |y, |, which some-
times is minimized in the effort to minimize the overall communication of
the processor m(M;). Nevertheless, OF},, is considered in the literature
to be a good representation for Tsoper-

Incremental methods for the minimization of OFyy, are based on local
optimization algorithms. These algorithms search a set of finite pertur-
bations in the solution space (i.e., the space of all mesh partitions) for
a given initial solution (i.e., partition) until a perturbation with a lower
cost can be found. Examples of such perturbations for the graph parti-
tioning problem appear in the literature [19, 23]*.

A simple procedure for systematically searching the set of perturba-
tions in the solution space is described in [23]. The procedure, in each
step of the search, constructs a set of new feasible solutions, ¢,,¢,,, from an
existing feasible solution ¢,. The set of new feasible solutions is called
the neighborhood structure of ¢, and it is denoted by N(¢,). Subse-
quently, two feasible solutions ¢ and ¢ are called neighbors if and only if
t is the result of a finite number of consecutive perturbations (element
exchanges or assignments in the case of the graph partitioning) on ¢. A

4These algorithms have a long history, some were discussed in the elementary text Introduc-
tion to Computer Science, John R. Rice, 1969 and were analyzed mathematically in the early
1960’s by Stanley Reiter.

local optimization algorithm for a given initial solution ¢, and neighbor-
hood structure N (¢,) performs a local search of the neighborhood N (t,),
and replaces the current solution ¢, with a neighbor solution u € N(¢,)
that minimizes the cost function OFj,,. This process is repeated until a
locally optimal solution has been identified.

The simplest neighborhood structure for the graph partitioning prob-
lem and a given feasible solution (i.e., partition (A,, B,) of a graph G) is
given by N(A,, B,) = { all partitions A*, B* that are obtained from the
partition A,, B, by a single swap operation }. The swap or assignment
operations for forming A*, B* are defined by: A* = (4, \ {a}) U {b} and
B* = (B, \ {b}) U{a}, where a,b are vertices and a € A, and b € B,.

In summary, incremental partitioning heuristics based on local op-
timization algorithms iteratively improve the partition of the mesh by
applying local transformations. Local transformations use element ex-
changes or assignments of elements near by the inter-submesh interfaces
(separators). Local transformations use profit functions [4] to guide the
selection process —there are many choices on the subset of the elements
which can be considered for an exchange or re-assignment; however, the
profit functions can get their maximum values for elements that are in
the neighborhood of the mesh separators.

3. PARALLEL MESH GENERATION

Parallel mesh generation methods decompose the original meshing
problem into smaller subproblems that can be solved in parallel. In [11]
parallel mesh generation methods for the distributed memory model are
classified in terms of the way and the order the artificial boundary sur-
faces (interfaces) of the subproblems are meshed. Specifically, in [11] the
parallel methods are classified into three large categories: (i) methods,
like the SMGP approach we present here, that mesh the subproblem
interfaces in parallel as they mesh the individual subproblems [7, 3],
(ii) a priori methods, that first mesh the interfaces of the subproblems
and then mesh in parallel the individual subproblems [31, 24], and (iii)
posteriori methods, that first solve the meshing problem in each of the
subproblems in parallel and then mesh the interfaces so that the global
mesh is consistent [12]. Each of the three categories is further classified
in sub-categories based on the means like discrete or continuous repre-
sentation of the geometry that are used to implement the decomposition
of the original problem into subproblems.

3.1. PARALLEL DELAUNAY MESHING

A triangle or tetrahedral mesh, M, is called Delaunay if for each el-
ement e € M the open circumscribed circle or sphere of e is empty
i.e., none of the grid points of the mesh are contained within the cir-
cumcircle (or circumsphere) triangles (or tetrahedra) of the mesh. This
criterion is called the empty sphere or Delaunay criterion. The Delau-
nay criterion has been used successfully, for sequential mesh generation
of complex geometries, since the late 80’s. There are many different
Delaunay triangulation methods based on divide-and-conquer and gift-
wrapping methods [14]. However, the most popular Delaunay meshing
techniques are the incremental methods [14]. Incremental methods start
with an initial mesh (usually a boundary conforming mesh) which is
refined incrementally by inserting new points (one at a time) using a
spatial distribution technique. Each new point is re-connected with the
existing points of the mesh in order to form a new triangulation or a
new mesh. The difference between the various Delaunay incremental
algorithms is due to: (1) different spatial point distribution methods for
creating the points and (2) different local re-connection techniques for
creating the triangles or tetrahedra.

The most popular local re-connection methods are the flip edge/face
methods [20] and the BW kernel [2, 29]. The flip edge/face methods are
easier to implement on single CPU computers using simple and efficient
data structures. However, the disadvantage of the flip methods is that
the code complexity of the parallelization is increasing and performance
is decreasing. In [22] we show that setbacks —due to the undoing (or
rollback) of face flipping from more than one processors— can increase
from 7% of the total number of updates on 2 processors to 29% on 16
processors for a mesh containing one million tetrahedra. In contrast, the
BW kernel is easier and more efficient to parallelize.

3.1.1 Bowyer-Watson kernel. The BW kernel is an itera-
tive procedure; each iteration performs two basic operations: (i) point
insertion, where a new point is inserted using an appropriate spatial dis-
tribution technique; and (ii) element creation, where existing triangles
that violate the empty sphere criterion are removed and new triangles
are built by connecting the newly inserted point with old points.

Given an existing Delaunay triangulation, T;, a new triangulation,
T; 11, can be incrementally constructed by inserting a new point into 7;
and recovering the Delaunay property of the triangulation through local
transformations. This process can be viewed as an iterative procedure,
fori=0,N do: T;y1 =T; — C; + B;, where C} is defined as the the

union of all tetrahedra ¢ € T; whose circumsphere encloses the new point
p; and ball B; is defined to be the set of all new tetrahedra that include
p; as a vertex. This algorithm is described bellow:

1 point insertion: the creation of a new point, p;+1 ¢ T3,

2 point location: the identification of the tetrahedron, ¢ € T; con-
taining pj1,

3 cavity construction: the computation of the set, Cj, of tetrahe-
dra t € T; that violate the Delaunay property

4 cavity re-triangulation: the deletion of the tetrahedra in Cj
from T;, and the creation of the ball B;.

Figure 2 depicts a single iteration of the BW kernel, starting from an
initial boundary conforming mesh.

Initial Mesh Ty Insertion of py and Ball of new New Mesh T7:
Computation of Cy point, By T =Ty — Cy+ By

Figure 2 Single iteration from Bowyer-Watson algorithm.

The efficiency of the parallel BW kernel depends on the efficiency of
the searching procedure for finding the first triangle in conflict (i.e., tri-
angle that violates the Delaunay property) for each new point insertion.
Also, it depends on the efficiency of the cavity computation and element
creation and distribution (or allocation). In this chapter we concern
about the efficiency of the parallel implementation and element creation
and distribution steps.

Parallelizing the Bowyer-Watson kernel. The BW kernel,
for each new point insertion, performs purely local transformations on
an existing Delaunay triangulation to maintain locally the Delaunay
property. It is therefore possible to apply the BW kernel concurrently in
many areas of the mesh, without disrupting the global Delaunay property
of the triangulation [9].

Without lost of generality in our approach we can assume that the
input to the parallel BW kernel is Tj, an initial Delaunay tetrahedraliza-

tion of a set of points, S € E3. We also assume that T has been parti-
tioned into N submeshes My, C T,k =1,2,3,...,N;. When Ng >> P,
P is the number of processors, we have an over-decomposition; this case
is especially attractive when the runtime system implicitly balances the
processors’ workloads. In the rest of this chapter we assume, for sim-
plicity, that Ny = P.

The decomposition of Ty into submeshes induces a separator, I,
between submeshes M; and M), if there exists at least one common
face between them. I;; consists of triangular interface faces, edges,
and vertices, which are replicated in all submeshes sharing them. Two
submeshes M; and M}, are called adjacent if Ij; # 0 and are called
neighbors if My, N M; # (.

New points are inserted concurrently into submeshes and the resulting
cavities are computed and re-triangulated independently. When tetra-
hedra in one of the submeshes are non-Delaunay with respect to a point
insertion in another submesh, the cavity may extend across the interfaces
between these two submeshes (an interface cavity); otherwise, the cavity
is local, and is constructed and re-triangulated “atomically,” without the
intervention of other processors that handle adjacent submeshes. Figure
3 depicts an interface mesh.

A simple method for computing a cavity, C,, is to perform a depth-
first search over the data structures to find the tetrahedra that are non-
Delaunay (the encroached tetrahedra, see Figure 3, Left) with respect
to the point p, starting from some initial encroached tetrahedron. In
the parallel BW kernel, the construction (or ezpansion) of an interface
cavity is distributed across possibly many submeshes. A more detailed
description is given in [9]

___Submesh 2 ¥ Submesh 2

Submesh 0 pe—— \ Submesh 0

Submesh 1

Figure 83 Cavity expansion over more than one submeshes across the inter-submesh
interfaces. Dashed line show that inter-submesh interfaces.

4. SIMULTANEOUS MESHING AND
PARTITIONING

Traditionally, mesh partitioners decompose the mesh into P sub-
meshes such that the following two criteria are approximately satisfied:

(i) equi-distribution: minimize maximum difference in the number of
elements between the submeshes,

i M;| — |M; 3
mlnlgli,?gpll il — | M| (3)

(ii) quality of the separators: minimize the surface to volume ratio of
tetrahedral faces for each submesh,
. 1Si]

1<i<p |V

(4)

where |M;| is the number of elements of the submesh A, |S;| is the
number of faces on the interfaces of the submesh M;, and |Vj| is the
total number of faces of the submesh M;. Next, we describe the dis-
tributed element creation step of the parallel mesh generation process
so that these two criteria are satisfied while the submeshes are generated
concurrently.

In Section 2, we have seen that local optimization methods apply
transformations locally on a small subset of elements at a time. Also,
we have seen that there is significant freedom on the choice of the subset
of elements that are selected to be assigned to different submeshes; the
criterion (ii) is satisfied as long as these elements are in the neighborhood
of the existing mesh separators. Similarly, in Section 3 we have seen that
the BW kernel for Delaunay triangulation applies local transformations
on a small subset of elements (the cavity of a newly inserted point).
These transformations are applied in order to improve the mesh quality
while preserving the Delaunay properties of the mesh. The basic idea of
simultaneous mesh generation and partitioning is to distribute the newly
created elements from the re-triangulation of the interface cavities in a
way that the criteria (i) and (ii) are optimize and data migration of
elements is minimized.

From the definition of the interface cavity, the newly created elements
are in the neighborhood of the mesh separators and thus are very good
candidates for new assignment —in the sense of incremental partition-
ing methods. The newly created elements involve the most recently
accessed data. Their data structures are still in cache or memory, so
by deciding at creation time which processor should “own” these new

elements, we minimize both local/remote memory and disk access op-
erations. This will have a lasting impact in the performance of parallel
meshing as long as we prevent future migrations of elements due to load
imbalances. Next, we describe a prediction method, for the final number
of elements per processor, that is used to prevent imbalances and thus
data migration. The prediction method is using information on the cur-
rent state of the mesh (i.e., average quality of existing elements, number
of ”bad” elements to be removed, etc.) and the pre-defined final quality
of elements.

4.1. EQUI-DISTRIBUTION

Instead of waiting to complete the mesh generation phase and then
re-distribute the newly created elements, we propose to re-distribute the
new elements as they are created. It is important to re-distribute only
the elements that are generated from interface cavities, since these el-
ements are “close” to separators of the partitions and maximize the
profit functions of incremental partitioning algorithms —element re-
distribution from local cavities will result into disconnected submeshes
and it will increase the size of the separators or the surface to volume
ratio. The simplest option for re-distributing elements from interface
cavities is to place the new elements on the processor that is responsi-
ble for their creation. Intuitively, and as the performance data suggest,
some of the processors may end up with many more elements, depend-
ing on the initial distribution of the geometry (i.e., number of elements
with large circumradius-to-shortest edge ratio). This approach leads into
workload imbalances that subsequently affect the performance of both
the parallel mesh generation and the solution phases, if re-partitioning is
not applied. Of course, re-partitioning will introduce undesired overhead
due to global synchronization and data-movement.

A simple solution to this problem is to continuously re-distribute the
new elements as they are created among the processors that are par-
ticipating in the creation of interface cavities; the processor with the
smallest number of elements at the time of element creation is a good
candidate to receive the new elements. An example of interface cavity
expansion is shown in Figure 4. The cavity is expanded into submeshes
0, 1, and 2, then the cavity is re-triangulated, and the new elements
are redistributed to the participating submeshes. As it is expected, this
approach leads to unnecessary movement of elements among the proces-
sors, because the number of elements on the processors is changing (in
a non-monotonic way which depends on the current quality of elements)
during the parallel mesh generation. The temporal changes in the size

of the submeshes will trigger continuous element migration between the
submeshes in order to continuously maintain processors’ workload bal-
ances.

Submesh 2
Submesh 2

Submesh 0 24y ™~

Submesh 1
>~ Submesh 1

Figure 4 An interface cavity is expanded into 3 submeshes, re-triangulated, and
redistributed among the participating submeshes.

We try to minimize the unnecessary data-movement by considering
the final number of elements per processor in our decision making on
the allocation of new elements. However, since we do not know the
final number of elements per processor we use a prediction formula to
approximate it. The prediction formula uses information on the current
“state” of the mesh: (1) the current number of elements, (2) the current
number of “bad” elements, and (3) the current mesh quality for each of
the processors participating in the creation of an interface cavity —the
number of participating processors per interface cavity is small. It is
inexpensive for each processor to maintain (locally) information about
the current state of the processors that handle adjacent or neighboring
submeshes. The information on the current state of the mesh is captured
in a simple formula that at any time approximates the final number of
elements in each of the submeshes:

Cne/c — Coe/c
(#)

X Npad_elms X w(chra Qtarg) (5)
Cv/c

Npredicted = Nelms +

where Cpe/cs Coefer and ¢y are constants; ¢, is the average number of
new elements that are created per cavity, ¢,/ is the average number
of old elements per cavity that are removed, and c¢;/. is the average
number of “bad” elements per cavity that are destroyed. The constants
Qeurs Qtarg are the average current and target mesh quality for a given
submesh. The Np,egicteq is computed in parallel for each submesh.

70000 [

60000

50000 |

40000

—— Actual # of elems

30000 - ——— Predicted # of elems

of Elements

20000 -

10000 r,

0 10 20 30 40 50 60 70
Time (s)

Figure 5 Actual and predicted number of elements versus time for one region of a
16 region mesh.

Figure 5 tracks the progress of a prediction formula of equation (5)
in a single submesh over the mesh generation course. The output of the
prediction function at any instance in time is the number of elements
expected in the nezt instance. This graph shows that the prediction
function we use is reasonably accurate and does not vary widely from
the actual number of elements over the course of the mesh generation.

5. PERFORMANCE EVALUATION

We use as Model Problem, (2, a unit cube, within which is suspended
a regular octahedral hole centered at the centroid of the cube. The
vertices of the octahedron are positioned .25 units from the cube’s cen-
troid along the perpendicular bisectors of the cube’s faces, such that
vertices along the same bisector are .5 units apart. We use Q for the
evaluation of both the traditional approach, based upon partitioning al-
gorithms implemented by libraries like Chaco and Metis, and the SMGP
approach. The domain € is discretized with three different meshes of
200,000, 500,000, and 1,000,000 elements each. The sequential mesh was
generated on a Wide SP node. A Wide SP node is a 135MHz Power2
SuperChip (P2SC) with 2 GB memory, 128K cache, and 256bit mem-
ory bus. Parallel Metis (ParMetis) and SMGP were run on 16 Thin SP
nodes. A Thin SP node is a 120MHz P2SC with 1GB memory, 128K
cache, 256bit memory bus. The Thin SP nodes are connected via the
SP switch; the SP switch is a TB3 switching fabric with 150MB/s peak

hardware bandwidth. The SP machine was located at Cornell Theory
Center.

The meshes were generated both sequentially and in parallel using
the following two quality criteria: (1) minimize the maximum element
volume, and (2) minimize the largest element circumradius-to-shortest-
edge ratio (AR). The maximum element volume criterion controls the
size of the mesh, while the AR bounds the “size” of the worst element
in the mesh.

Next, we present performance data from traditional state-of-the-art
libraries for partitioning medium size meshes on the nodes of distributed
memory parallel machines like the SP. Then we present data from four
different versions of the SMGP algorithm and compare them with ParMetis
—a widely used parallel graph partitioning package.

5.1. TRADITIONAL APPROACH

Our goal is to deliver finite element meshes for parallel PDE solvers.
The meshes should be stored on the processors in a format that is suit-
able for parallel finite element PDE formulators. In our evaluation we
include the time it takes to generate, deliver, and place the actual ele-
ments of the submeshes on the processors in a way that they can be used
without any further processing by the PDE solvers. The reason we insist
on this evaluation is because a large percent of the total simulation time
is spent in delivering the elements to the processors, for parallel finite
element formulators.

Chaco and Metis are two well known libraries that are used routinely
by the scientific community for mesh partitioning. Tables 3 and 4, for
the Model Problem €, verify that both Chaco and Metis work well in
terms of both mesh equi-distribution and quality of separators. We do
not have data for a million element mesh for Chaco and Metis, because
of memory limitations imposed by the memory requirements of the se-
quential mesh generation, translation of mesh data structures to CSR
format, and partitioning libraries.

Table 5, indicates that ParMetis generates partitions which do not
distribute the elements as evenly as the partitions generated by Metis.
Of course, small imbalances, are unlikely to have a major impact in
the overall performance of the parallel PDE solver. However, in the
case of ParMetis we observe a trend, the load imbalance doubles as the
mesh size doubles. For meshes of hundreds of millions of elements such
imbalances are expected to have a negative impact on the performance
of the parallel PDE solvers.

Table 3 Equi-distribution criterion measured with respect to the difference in the
number of elements between the largest and the smallest submesh, for a 16-way

partition.

Metis ParMetis

Mesh Size Chaco (MKL
0
1

200K Y 316
500K 4 623
1000K — — 1298

Table 4 Average size of separators measured by the number of interface faces per

submesh for a 16-way partition.

Mesh Size Chaco (MKL)

Metis ParMetis

200K 1366 1366 1343
500K 2623 2587 2538
1000K — — 4105

Table 5 Equi-distribution criterion for ParMetis. Again, it is measured with respect
to the difference in the number of elements between the largest and the smallest

submesh for a 16-way partition.

Mesh Size

ParMetis

25,000

50

50,000

123

100,000

202

250,000

348

500,000

623

1,000,000

1298

2,000,000

2009

The total execution time of the traditional approach for generating,
partitioning, and placing unstructured meshes onto the nodes of a par-
allel machine (in a form that can be used by parallel finite element for-
mulators) is equal to the sum of the execution times: (1) for generating
the mesh sequentially or in parallel, (2) for transforming the mesh data
structures into the CSR® format that generic graph partitioning libraries
like Chaco and Metis require, (3) for loading the CSR data on proces-
sors, (4) for partitioning in parallel the mesh graph, (5) for migrating
the element as it is dictated by partitioners, and (6) for generating the
submeshes on the processors in way that they can be used by FE formu-
lators. The total execution time for all these phases using Chaco, Metis,
and ParMetis is shown in Table 6.

Table 6 Total execution time in seconds for generation, partitioning, and loading a
mesh onto 16 nodes of an IBM SP/2.

Mesh Size Chaco (MKL) Metis ParMetis

200K 110 97 90
500K 277 237 215
1000K — — 439

Table 7 shows the percentage of the overhead for I/O (reading and
writing the mesh to be partitioned) and data movement in the case of
ParMetis. ParMetis uses an initial partition which is further optimized
in parallel with respect to a number of criteria [25] similar to ones we
have listed in Section 4. For example, ParMetis in order to optimize the
initial partitions, for the 200K, 500K, and 1000K meshes, performs data-
movement of more than 191K, 473K, and 934K elements, respectively
—almost all of the elements were re-assigned.

In summary, the traditional approach for generating, partitioning,
and placing very large meshes in an optimal way (w.r.t criteria i and ii,
Section 4) has two weaknesses:

1 I/O and data movement due to re-partitioning is prohibitively ex-
pensive, for very large simulations. Despite the progress in par-
allel I/O hardware and software technologies the I/O for loading

5The CSR format is a simple and widely used format for efficiently storing sparse graphs.
The structure of a graph, G, is represented with two arrays: (a) the adjacency array, E, and
(b) the range array, N. For a graph with v vertices and m edges, |E| = 2m, and [N| = v + 1.
N maps the nodes n; € G to the range E[N;,N;;1], which contains the indices of the nodes
adjacent to n;. |E| = 2m since, for nodes n; and n;, both edge (n;,n;) and edge (n;,n;) are
stored.

Table 7 Percentage of I/O required to generate, partition and load the mesh for
the PDE solver. In the case of ParMetis the percentage includes the time for data
movement due to partitioning.

Mesh Size Chaco (MKL) Metis ParMetis

200K 84 % 96 % 97 %
500K 82 % 95 % 98 %
1000K — — 98 %

hundreds of millions to a billion element mesh will remain a chal-
lenging problem. It needs to be addressed algorithmically in order
to achieve scalability and utilize future Teraflops and Petaflops
supercomputers.

2 The solution of the equi-distribution problem using parallel parti-
tioners is expensive; there is a trade-off between the quality of the
resulting partition and the performance of the partitioners. The
compromise in equi-distribution is not noticeable for small meshes,
but for very large problems, and for the extremely fast processors
of the near future, such a trade-off will affect the overall perfor-

mance of the parallel PDE simulations®.

5.2. SMGP APPROACH

Next, we present preliminary data that compare the SMGP approach
with the traditional approach using the best known parallel partitioner
(ParMetis). Also, we present data from four SMGP algorithms. The
first algorithm, SMGPO, generates and partitions the mesh in a very
efficient way (Table 8); it is five times faster than the traditional ap-
proach. However, it does nothing to improve the element distribution
(Table 9) and the quality of the separators (Table 10). New elements
remain where they are created. Although SMGPO is very efficient it suf-
fers from severe imbalances which in turn affect its performance, since
some of the processors spend more time than others on parallel meshing.
Of course, a separate mesh re-partitioning phase can correct the imbal-
ancing problems, but again such a re-partitioning phase will introduce
synchronization and data movement overheads.

6Unless implicit methods are used to address this problem [8] during the mesh generation
and PDE solution phase.

Table 8 Total execution time in seconds on 16 processors. The total execution time
includes both data redistribution and SMGP times.

Mesh Size ParMetis SMGP0 SMGP1 SMGP2 SMGP3

200K 90 42 42 42 42
500K 215 65 87 64 62
1000K 439 97 160 91 94

Table 9 Balance measure as the difference between the submesh with the largest
number of elements and the submesh with smallest number of elements, for a 16-way
partition.

Mesh Size ParMetis SMGP0 SMGP1 SMGP2 SMGP3

200K 316 2937 60 2177 2090
500K 623 11845 181 3830 2065
1000K 1298 30632 96 11485 7293

Table 10 Maximum size of separators measured in terms of number of interface faces,
for a 16-way partition.

Mesh Size ParMetis SMGP0 SMGP1 SMGP2 SMGP3

200K 1343 2136 6933 1774 1822
500K 2538 5692 28739 3482 3561
1000K 4105 10224 64518 5570 5785

The second algorithm, SMGP1, uses the prediction formula of equa-
tion (5) to estimate the final number of elements per submesh. Each
processor uses the prediction formula in order to decide when and where
to distribute the newly created elements. Table 9 indicates that SMGP1
reduces imbalances by more than ten times, for large meshes, compared
to the traditional approach and it is still more than two times faster
than the traditional approach. SMGP1 like SMGPO0, does nothing to
improve the quality of the separators and therefore it does not return
good quality partitions in terms of the separator size (see Table 10), as
it is expected. A post-processing for the optimization of the separators
(using local exchange optimization methods like GGP [6]) needs to be
applied in order to minimize the communication overheads during the
parallel mesh and PDE solution phases.

Table 11 Ratio of number of moved elements to mesh size for a 16-way partition.

Mesh Size ParMetis SMGP1 SMGP2 SMGP3

200K .96 .03 .07 .08
500K .95 .38 .14 A2
1000K 93 .52 14 A2

The third algorithm, SMGP2, uses the equi-distribution scheme from
SMGP1 and a simplified version of the Kernighan-Lin [19] algorithm to
improve the quality of the mesh separators. The Kernighan-Lin (KL)
algorithm improves the separators of a given graph (element-dual graph)
by considering sequences of vertex swaps between partitions of the graph.
A vertex of the graph may be swapped from one partition to another if
the gain (measured in terms of improvement on the size of the separa-
tors) in performing the swap is larger than the gain of swapping other
candidate vertices. The SMGP2 algorithm uses a restricted form of
the KL algorithm, where only a single sequence of swaps is considered
and only elements of interface cavities can be candidates for swapping.
SMGP2 generates partitions whose average size of separators is close to
the average size of separators generated by ParMetis —Table 10 depicts
the maximum size of separators. The simplifications and restrictions we
impose on SMGP2 algorithm, for performance reasons, prevent SMGP2
from improving the separators further. Moreover, SMGP2 like KL algo-
rithm, is local in nature and it can not compete in terms of the quality of
the solution (partition) with the more powerful multi-level partitioning
algorithms [16] used by Chaco and ParMetis.

The last algorithm, SMGP3, tries to combine the effectiveness of
SMGP1 on the equi-distribution problem while minimizing data move-
ment and the effectiveness of SMGP2 on the reduction of separator sizes.
SMGP3 generates submeshes whose separators are good compared to
separators generated by ParMetis. Moreover SMGP3 is two to three
times faster than the traditional approach. SMGP3 and SMGP1 have
the same time complexity, but the constant term for SMGP3 is much
larger because of the local transformation for improving the quality of
the separators. However, SMGP3 performs 75% less data-movement
than SMGP1 (see Table 11) and thus minimizes communication over-
head. SMGP3 uses a weighted profit function that combines the profit
functions from SMGP1 and SMGP2.

The development and evaluation of the SMGP3 algorithm has not
been completed yet. SMGP3 does not completely capture the effec-

Table 12 Execution time is the time in seconds that it takes to place a two million
element mesh on the 16 nodes of an SP machine, the balance measure the equi-
distribution of the submeshes which is measured as the difference between the smaller
and larger submesh, and the surface to volume ration (S/V) is used to quantify the
quality of the separators for a 16-way partition generated by ParMetis, m-SMGP and
SMGP3 methods.

Statistics ParMetis m-SMGP3 SMGP3
Execution Time 1232 168 135
Balance 2009 1529 21053
S/V Ratio 0.0387 0.0332 0.0618

tiveness of either SMGP1 or SMGP2 in terms of equi-distribution and
quality of separators, respectively. SMGP3 reduces imbalance by four
times compared to SMGPO and lowers the size of separators by half
compared to SMGPO0, while at the same time is as slightly faster than
SMGPO. SMGP3 reduces the data-movement overheads by more than
four times (see Table 11) compared to SMGP1 and more than 7.5 times
compared to traditional approach.

6. CONCLUSIONS AND FUTURE WORK

We have presented a new approach, Simultaneous Mesh Generation
and Partitioning, for solving the generation, partitioning, and distribu-
tion problems of unstructured guaranteed quality Delaunay meshes on
parallel platforms. The coupling of these problems maximizes proces-
sor and memory utilization by eliminating unnecessary and expensive
access operations to and from cache, local/remote memory, and discs.
Our preliminary results suggest that the SMGP approach is nine times
faster than the traditional approach for parallel mesh generation and
partitioning problem, while at the same time it generates and main-
tains an optimal distribution of the data structures (mesh) for parallel
adaptive PDE solvers. Finally, the SMGP approach is leads to stable
parallel mesh generation methods, while the traditional approaches im-
pose “hard” bounds on the quality of the final mesh and thus do not
maintain the same quality as the sequential mesh generators. For exam-
ple, the quality of a mesh obtained by parallel refinement of coarse sub-
meshes, using some form of constrained meshing [3, 24], will be limited
by “small” angles that appear in the interfaces of the coarse submeshes.
SMGP eliminates these problems.

Future Work. The SMGP approach needs more work in order to
be: ten times faster than the the traditional way of generating and main-
taining the distributed data structure for parallel adaptive PDE solvers.
The performance data from Section 5 indicate that this goal is feasible.
Table 12 suggests that by applying graph contraction techniques [21] sim-
ilar to multi-level partitioning methods [16, 17] we can simultaneously
generate, partition, and place the submeshes on the processors by seven
times faster than the traditional approaches. And at the same time we
can improve the equi-distribution by about 25% and achieve better qual-
ity of separators compared to the traditional partitioning methods. Our
next objective is to achieve the ten-fold improvement in performance and
preserve the quality of partitions by tightly coupling the graph contraction
(m-SMGP) techniques with mesh generation process.

Acknowledgments

Many colleagues and friends helped us in many different ways during the time we
were developing these ideas, we are thankful to all of them. The idea of considering
the simultaneous mesh generation and partition of meshes initially surfaced in our
discussions with Geoffrey Fox in early 90’s. Tim Baker gave us the model problem €2
and an initial Delaunay triangulation. My colleagues and students from Cornell and
Notre Dame, especially Induprakas Kodukula, Chris Hawblitzel, and Kevin Barker
with whom we’ve build the software infrastructure that helped us ease the task of im-
plementing parallel mesh generation codes. My students Florian Sukup and Demian
Nave for implementing the parallel mesh generation codes and collecting the perfor-
mance data we present in Section 5. IBM’s Research Program and Marc Snir for
helping us to acquire an extremely useful, for this project, SP machine. Keshav Pin-
gali and Paul Stodghil for their continuous support and help to integrate our parallel
meshing work in the crack propagation test-bed at Cornell.

References

[1] H. Bao, J. Bielak, O. Ghattas, L. F. Kallivokas, D. R. O’Hallaron,
J. R. Shewchuk, and J. Xu. Earthquake ground motion model-
ing on parallel computers. Supercomputing 96, Pittsburgh, PA,
November 1996.

[2] A. Bowyer. Computing Dirichlet tessellations. The Computer
Journal, 24(2):162-166, 1981.

[3] P. Chew, N. Chrisochoides, and F. Sukup. Parallel constrained
Delaunay meshing. In Proceedings of the 1997 ASME/ASCE/SES
Summer Meeting, Special Symposium on Trends in Unstructured
Mesh Generation, Northwestern University, Evanston, IL, June

[5]

[10]

[11]

[12]

29-July 2, 1997.

N. P. Chrisochoides, C. E. Houstis, S. K. Kortesis E. N. Houstis,
and J. R. Rice. Automatic load balanced partitioning strategies
for PDE computations. In (E. N. Houstis and D. Gannon, eds.),
Proceedings of International Conference on Supercomputing, ACM
Press, pp. 99-107, 1989.

N. Chrisochoides, E. Houstis, S. B. Kim, M. Samartzis, and J.
Rice. Parallel iterative methods. Advances in Computer Methods
for Partial Differential Equations VII, (R. Vichnevetsky. D. Knight
and G. Richter, eds.), IMACS, New Brunswick, NJ, pp. 134-141,
1992.

N. P. Chrisochoides, E. N. Houstis and J. J. Rice. Mapping al-
gorithms and software environment for data parallel pde iter-
ative solvers. Special Issue of the Journal of Parallel and Dis-

tributed Computing on Data-Parallel Algorithms and Program-
ming, 21(1):75-95, April 1994.

N. Chrisochoides and F. Sukup. Task parallel implementation of
the Bowyer-Watson algorithm. Proceedings of Fifth International
Conference on Numerical Grid Generation in Computational Fluid
Dynamics and Related Fields, pp. 773-782, 1996.

N. Chrisochoides, K. Barker, D. Nave, and C. Hawblitzel. Mobile
object layer: a runtime substrate for parallel adaptive and irregular
computations. Advances in Engineering Software, 31(8-9):621-637,
August 2000.

N. Chrisochoides Parallel Delauany triangulation kernel. To be
submitted in the Journal of Parallel and Distributed Computing,
2001.

H. L. de Cougny, K. D. Devine, J. E. Flahery, R. M. Loy, C. Oztu-
ran, and M. Shephard. Load balancing for parallel adaptive solu-
tions of partial differential equations. Appl. Numer. Math., 16(1-
2):157-182, 1994.

H. L. de Cougny and M. Shephard. Parallel Unstructured Grid
Generation. CRC Handbook of Grid Generation, (J. F. Thompson,
B. K. Soni, and N. P. Weatherill, eds.), CRC Press, Inc., Boca
Raton, pp. 24.1-24.18, 1999.

H. L. de Coughy and M. Shephard. Parallel volume meshing using
face removals and hierarchical repartitioning. Comput. Methods
Appl. Mech. Engrg., 177:275-298, 1999.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

G. C. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D.
Walker. Solving Problems on Concurrent Processors. Prentice Hall,
New Jersey, 1988.

P. Frey and P. George. Mesh Generation: Applications to Finite
Elements. Hermes Science Publishing, pp. 814, 2000.

B. Hendrickson and R. Leland. The Chaco User’s Guide, version
1.0. Technical Report SAND93-2339, Sandia National Laborato-
ries, 1993.

B. Hendrickson and R. Leland. A multilevel algorithm for parti-
tioning graphs. SAND93-1301, 1993.

G. Karypis and V. Kumar. Multi-level k-way: Partitioning Scheme
for Irregular Graphs. Journal of Parallel and Distributed Comput-
ing, 48:71-95, 1998.

G. Karypis and V. Kumar. A fast and highly quality multilevel
scheme for partitioning irregular graphs. STAM Journal on Scien-
tific Computing, to appear.

B. W. Kernighan and S. Lin. An efficient heuristic procedure for
partitioning graphs. The Bell System Technical Journal, pp. 291—
307, 1970.

C. Lawson Transforming triangulations. Discrete Mathematics,
3:365-372, 1972.

N. Mansour, R. Ponnusamy, A. Choudhary, and G. Fox. Graph
Contraction for Physical Optimization Methods: A Quality-Cost
Tradeoff for Mapping Data on Parallel Computers. International
Supercomputing Conference, Japan, July 1993, ACM Press.

D. Nave and N. Chrisochoides A local reconnection scheme for
parallel Delaunay mesh generation, Trends in Unstructured Mesh
Generation, Michigan, August 2001.

C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization:
Algorithms and Complexity. Prentice-Hall, Englewood Cliffs, NJ,
1982.

R. Said, N. Weatherill, K. Morgan, and N. Verhoeven. Distributed
parallel Delauany mesh generation. Comp. Methods Appl. Mech.
Engrg., 177:109-125, 1999.

K. Schloegel, G. Karypis, and V. Kuma. Parallel multilevel dif-
fusion schemes for repartitioning of adaptive meshes. Technical
Report 97-014, University of Minnesota, 1997.

H. D. Simon. Partitioning of unstructured problems for parallel
processing. Technical Report RNR-91-008, NASA Ames Research
Center, Moffet Field, CA, 1990.

[27] T. Sterling. Petaflops Systems Operations Working Review.
Bodega Bay, CA, June 1998.

[28] C. Walshaw and M. Berzins. Dynamic load balancing for PDE
solvers an adaptive unstructured meshes. University of Leeds,
School of Computer Studies, Report 92.32, 1992.

[29] D. Watson. Computing the n-dimensional Delaunay tessellation
with applications to Vornoi polytopes. The Computer Journal,
24(2):167-172, 1981.

[30] R.D. Williams. Performance of dynamic load balancing algorithms
for unstructured mesh calculations. Concurrency Practice and Ex-
perience, 3(5):457-481, 1991.

[31] P. Wu and E. Houstis. Parallel adaptive mesh generation and de-
composition. Engrg. Comput., 12:155-176, 1996.

