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Abstract

We present an evaluation of a flexible framework and runtime software system for the dynamic load
balancing of asynchronous and highly adaptive and irregular applications. These applications, which
include parallel unstructured and adaptive mesh refinement, serve as building blocks for a large class of
scientific applications. Extensive study has lead to the development of solutions to the dynamic load
balancing problem for loosely synchronous and computation intensive programs; however, these methods
are not suitable for asynchronous and highly adaptive applications. We evaluate a new software frame-
work which includes support for an Active Messages style communication mechanism, global name space,
transparent object migration, and preemptive decision making. Our results from both a 3-dimensional
parallel advancing front mesh generation program, as well as a synthetic microbenchmark, indicate that
this new framework out-performs two existing general-purpose, well-known, and widely used software
systems for the dynamic load balancing of adpative and irregular parallel applications.

1 Introduction

The dynamic load balancing of loosely synchronous and computationally intense adaptive applications (such
as field solvers) has been studied extensively in the past 15 years, and some very good methods and software
tools [12, 16, 3, 8, 15, 17, 11] have been developed to assist the computational scientist. These methods and
software systems are designed to support the development of parallel multi-phase computations in which
computationally-intensive phases are separated by computations, such as global error estimation, which
require global synchronization. Load balancing is accomplished by dynamically repartitioning the data after
the global synchronization phases [11, 22]. However, there exists a class of problems, known as asynchronous
and highly adaptive, for which the dynamic load balancing problem remains open.

Asynchronous and highly adaptive applications are defined by several characteristics. The first is that
no global synchronization points are inherent to the application. Barriers used to exchange processor work-
load information for the purposes of load balancing must therefore be artificially introduced. A second
characteristic is that the computational weights associated with individual work units may vary drastically
throughout the execution (i.e., from one iteration to the next) of the application. This reflects the adaptivity
of the application. For instance, the computational weights associated with “interesting” areas in the data
domain will be much larger than for “uninteresting” regions. Furthermore, as the computation progresses,
it is impossible to predict which regions may become more or less “interesting”. These characteristics imply
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that the computational characteristics of the application cannot be predicted a priori, complicating the load
balancing task immensely.

An example of such an application is Parallel Adaptive Mesh Refinement (PAMR) for multi-scale ap-
plications, such as those used to study crack growth through a macroscopic structure under stress. Such a
system is subject to the laws of elasticity and plasticity which can be solved using the finite element method.
However, crack growth forces the geometry of the domain to change, which, in turn, necessitates localized
re-meshing. Adaptivity arises, for instance, when the tip of the advancing crack crosses from one subdomain
into another (say from subdomain D; into D;). It is unknown in advance when or where the crack growth
will take place, as well as the subdomains that will be affected. The computational complexity associated
with subdomain D; will increase dramatically due to the greater level of mesh refinement necessary to cap-
ture the advancing crack tip. This adaptivity makes the mesh refinement process highly irregular, meaning
incremental load balancing will be of little benefit.

Existing load balancing methods found in then literature and in publicly available software are not
suitable for asynchronous and highly adaptive applications for the following three reasons:

e Large penalty for global synchronization. Load balancing schemes built on a loosely synchronous ap-
plication model rely on global synchronization points for exchanging processor load information. For
applications built using this model, this is often not a problem, since computationally intensive work-
loads can amortize this overhead. However, for asynchronous applications such as PAMR, which are
often data intensive, synchronization points inserted solely for the purpose of load balancing can be
detrimental to overall performance.

e Difficulty in predicting future work loads. For instance, in the crack growth example, it is difficult to
predict which subdomains are going to be impacted by the advancing crack, making the computational
effort associated with those domains difficult to predict.

e Heavy workloads may delay message processing. This means that status update and migration request
messages associated with asynchronous load balancers may not arrive or be processed in a timely
manner. This is especially true for message passing libraries which rely on polling or receive operations.

The contribution of this paper is an evaluation of a low-overhead and general purpose runtime system
for the efficient implementation of asynchronous and highly adaptive irregular parallel scientific computing
applications.

The rest of the paper is organized as follows: in Section 2 we overview the state-of-the-art dynamic load
balancing methods and systems, as well as enumerate several of the tradeoffs that system designers must
make. In Section 3, we focus on two general purpose and widely used software systems for the dynamic load
balancing of parallel scientific computations. In Section 4, we present our framework and software system.
In Section 5, we examine the performance of these three systems in the context of a synthetic benchmark
program which, due to its flexibility, enables us to examine the effects of factors such as initial load imbalance
and ranges of computational weights present in the work units. Finally, we present our conclusions and future
work in Section 6.

2 Load Balancing State-of-the-Art

In order to provide an overview of the current state-of-the-art in load balancing technology, it is important
to partition the design space along several axes. This can be done by dividing the load balancing process
into its three primary steps: (1) information gathering and dissemination, (2) decision making, and (3) data
and/or computation migration. Of these, the first two play a critical role in the load balancing of highly
adaptive applications.

From the application’s perspective, we can view these axes in terms of a syncrhonization model. For
instance, loosely synchronous applications are composed of computationally intense phases separated by
phases which require global synchronization, making them well suited for load balancing schemes which
employ synchronous information gathering and decision making. This point of view gives us the following
classification:
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Figure 1: Using synchronization as a criterion for system classification

¢ (Loosely) Synchronous vs. Asynchronous: Synchronous load balancing methods and tools must
gather load information from all processors in order to reconstruct the global system state before any
load balancing decisions can be made. Software known as repartitioning tools fall into this category.
Once a graph describing the application state is constructed, it is partitioned in order to equally dis-
tribute the work load. While such load balancers are often able to achieve load balance of high quality,
the cost associated with synchronization and information exchange grows with both the number of pro-
cessors in the parallel system, and variance between the most and least computationally intense work
units; processors with less computationally intense data partitions may reach global synchronization
points long before more loaded processors leading to wasted processor cycles. In contrast, asynchronous
methods require communication with only a small fixed-size “neighborhood” of processors. Load bal-
ancing occurs only within neighborhoods, meaning that unaffected processors may continue with useful
application work. However, load balance across the entire system is often of lower quality, although
work has been done to improve this [14].

e Programmer-supplied Hints vs. Runtime Instrumentation: Load balancers must be able to
predict future load in order to make intelligent migration decisions. One method for doing this is for
the programmer to provide hints about the weight of pending computation. However, in an adaptive
application, this can be difficult to do with any accuracy. A second option is to make the assumption
that future performance will be related to what has been seen in the past. In this case, the runtime
system (or compiler, in the case of a specialized language) can insert profiling code into the program to
gather runtime statistics which can be used to predict future load. Unfortunately, the computational
weight associated with given data objects or methods can vary dramatically in an adaptive application
(for instance, a growing crack tip may cross into a new subdomain). In addition, some methods or
routines may only execute once, making profiling of little value.

e Explicitly Initiated Load Balancing vs. Preemptive Load Balancing: Because the load bal-
ancer’s functionality exists on the same physical processor set as the user’s application, load balancing
will necessarily steal processor cycles away from the application’s computation. Therefore, a mech-
anism must exist for determining when and how often to stop executing the application’s code and
begin load balancing. This can occur in one of two ways: either explicitly by the application, or im-
plicitly without the application’s knowledge or control. Explicit load balancing has the advantage that
well-tuned application routines will not be interrupted. This can be beneficial, for instance, when high-
performance caching algorithms are utilized. However, a disadvantage to this approach can be that
load balancer invocation can be delayed during computationally intense periods, leading to poor load
balancing performance. As an alternative, implicit load balancing will periodically check for pending



balancer messages, guaranteeing that they are processed quickly. However, well-tuned application code
must be interrupted, potentially impacting routine performance negatively.

Load balancing systems each must make decisions regarding these tradeoffs. Figure 1 highlights several
systems, which will discuss in greater detail next.

3 Representative Load Balancing Systems

Below we examine two widely-used load balancing software packages in the context of the classification
framework described in Section 2. This analysis will allow us to determine which characteristics are of the
most benefit when load balancing asynchronous and irregular applications.

3.1 ParMETIS

Repartitioning tools are the most frequently used dynamic load balancing methods found in the scientific
computing literature. These methods make use of a priori knowledge of the computation in order to partition
the workload (or problem domain, in the case of mesh refinement) into a user-specified number of chunks
(subdomains). Some methods use graph partitioning algorithms to divide an initial graph into equally
weighted subgraphs. Other methods are more application-specific, and may choose to optimize certain
criteria, such as subdomain surface-to-volume ratio, cut edge weights, or data redistribution costs.

Repartitioning tools can be found incorporated into such projects as Jostle [22], DRAMA [3], Zoltan [8],
and Metis [11]. For the comparisons presented in this paper, we have chosen to use Metis as a representative
for this class of tools, due to the fact that Metis is widely used and often serves as a basis for other software
systems.

Two common methods exist for creating a new partitioning for an already distributed mesh that has be-
come load imbalanced due to mesh refinement and coarsening: scratch-remap schemes create an entirely new
partition and tend to more evenly distribute load, while diffusive schemes attempt to tweak the existing par-
tition to achieve better load balance, often minimizing data migration costs. Metis’ ParMETIS_V3_Adaptive-
Repart() routine makes use of a Unified Repartitioning Algorithm [19], which combines the characteristics
of both scratch-remap and diffusive schemes.

A parameter known as the Relative Cost Factor («) is application-defined and describes the relative
costs required for performing interprocessor communication during parallel processing and performing data
redistribution associated with load balancing. This gives rise to the minimization function

|Ecut| + « |Vmove| (1)

where |E.y:| is the edge-cut of the partitioning, and |Viuove| is the total cost of data redistribution.

Repartitioning progresses in three stages. First, the graph is coarsened using a local variant of heavy-edge
matching [19] that is shown to be effective at helping to minimize both the number of edge-cuts and data
redistribution costs. In addition, this algorithm is scalable to a large number of processors. The second
step is to create an initial partition. Because the most beneficial method depends on the particular problem
instance [20], as well as the value chosen for the Relative Cost Factor (), the initial partition is created twice
(once using a scratch-remap method, and once using a diffusive method). The cost function (Equation 1)
is then computed, with the best option chosen. Finally, a multilevel refinement algorithm is used [18] while
minimizing Equation 1.

This type of explicit repartitioning suffers from the global synchronization and inaccurate workload
prediction problems discussed previously. In order to combat these problems, multiple repartitionings are
often necessary, forcing the costs associated with synchronization to be paid multiple times.

3.2 Charm-++

In many cases, applications (e.g. simulations) are organized as a series of discrete time steps. In such cases, it
is often beneficial to perform load balancing at strategic locations, rather than at arbitrary points during the
computation. Charm++ [9] provides a runtime framework in which load balancing policies may be “plugged



into” an application in a modular fashion. With each module provided in the Charm++ distribution, the
load balancing methods are implemented using a global barrier [4], making them well suited for loosely
synchronous computations’.

Charm++ presents a programming model in which the application data domain is divided into a number
of chunks, with the number of chunks being much greater than the available number of physical processors.
Each chunk is represented as a chare object, whose interface is defined by entry point methods. Messages
invoke computation by specifying the entry point to execute upon reception. Load balancing is achieved by
mapping and re-mapping chares to available processors. An assumption, known as the principle of persistent
computation and communication structure [5], is made which states that changes to the computation and
communication structure of an application happen slowly or infrequently.

Two components make up the Charm++ load balancing framework: the specific load balancing policy
or strategy and a distributed load balancing database constructed through runtime monitoring of the appli-
cation. The load balancing module makes use of the information contained within the database (possibly
gathering it at a central location, if necessary) to determine what chares should migrate in order to balance
the runtime load.

Because creating an optimal load distribution is an NP-hard problem that involves optimizing for both
interprocessor communication and load distribution, several heuristic approaches are provided [4]. The
simplest are Greedy Strategies, which sort both chare workloads and processor load levels in order to assign
the heaviest free chare to the processor with the lightest current load. Such a strategy may result in a large
amount of data migration. Refinement Strategies aim to minimize the number of chare migrations while
improving load balance. For each overloaded processor only, heavy objects are migrated to underloaded
processors until the load falls below a threshold, which is defined as a percentage of the average processor
workload. Finally, Charm++ provides Metis-based Strategies, which make use of Metis graph partitioning
capabilities described earlier.

For highly adaptive asynchronous applications, such as Parallel Adaptive Mesh Generation and Refine-
ment, there are several problems with this runtime model. First, each chare (mesh subdomain) is refined
only once during each mesh refinement iteration, making the runtime data gathering method ineffective at
predicting future load. Second, Charm++’s pick-and-process loop [10], which executes on each processor
and selects messages destined for local chares for execution, ensures that the entry point methods specified
by the messages execute atomically. Large, coarse-grained entry point methods may delay the subsequent
processing of messages, potentially delaying load balancing status update or request messages for some time,
hampering load balancing performance. The performance data of Figures 3 and 4 validate this point.

4 PREMA

The Parallel Runtime Environment for Multicomputer Applications (PREMA) is a runtime library based
on a design philosophy which includes:

e single-sided communication [2] similar to what is provided by Active Messages [21];

a global namespace which assigns a unique identifier to application-defined mobile objects [6];

transparent object migration and automatic message forwarding for mobile objects [6];

e a framework which allows for the easy and efficient implementation of customized dynamic load bal-
ancing algorithms [1];

e and a suite of commonly used dynamic load balancing strategies, such as Diffusion [7] and Multi-list
Scheduling [23].

The PREMA runtime model is similar to that of Charm++ in that the application’s data domain is
first decomposed into some number of subdomains, which is greater than the number of available physical

L According to [4], local synchronization barriers are used in all load balancing modules provided in the Charm-+ distribution,
but are not necessary in custom-designed modules.



// ---- Sequential Example ----

1 class tree_node_t {
2 public:
3 void do_work() {
4 if (left_child != NULL) { left_child->do_work(); }
5 if (right_child != NULL) { right_child->do_work(); }
6 // ... do more work here for local node ...
7 }
8 private:
9 tree_node_t* left_child;
10 tree_node_t* right_child;
11 3};
// ---- Example using PREMA’s ILB load balancing framework ----
1 void do_work_handler(int src, mol_mobile_ptr_t* mp, void* obj_data,
2 void* user_data, int size, void* arg)
3 {
4 tree_node_t* node = (tree_node_t*)obj_data;
5 node->do_work() ;
6 }
7
8 class tree_node_t {
9 public:
10 void do_work() {
11 if (!mol_mobile_ptr_is_null(left_child)) {
12 ilb_message(left_child, do_work_handler, NULL, O, NULL);
13 }
14 if (!'mol_mobile_ptr_is_null(right_child)) {
15 ilb_message(left_cihld, do_work_handler, NULL, O, NULL);
16 }
17 }

18 private:

19 mol_mobile_ptr_t left_child;
20 mol_mobile_ptr_t right_child;
21 };

Figure 2: Example to perform some task over the nodes in a tree data structure. At the top is the sequential
version of the code, while below is the code using the load balancing framework provided by PREMA’s ILB
component.

processors. Each subdomain is then registered with the PREMA system as a mobile object and assigned
a unique mobile pointer [6]. Computation proceeds using a message-driven mechanism; messages target
mobile objects and specify application-defined handler routines to be executed. Polling operations are used
to receive and process application messages. As mobile objects migrate during runtime due to load balancing,
the PREMA system uses a message forwarding scheme to guarantee that messages arrive at their targets
and that message ordering is preserved.

The mobile pointer construct, combined with a consistent data access mechanism (the message), allows
PREMA to facilitate a straight-forward migration from sequential code to its parallel, load balanced coun-
terpart. The top portion of Figure 2 contains a sequential code sample which performs some task over the
elements contained within a tree data structure. To convert this code to make use of the PREMA runtime
system, local pointers between tree nodes are replaced by mobile pointers, and direct data accesses using
pointer dereferences are replaced with accesses through messages (lines 12 and 15 in the bottom portion of
the figure). These messages will invoke the application-defined do_work_handler() routine at their targets,
which can then access the appropriate tree node methods. This strategy is independent of the locations of
the individual tree nodes, allowing the runtime system to migrate data in accordance to the particular load
balancing strategy.

PREMA’s load balancing framework [1] is designed to allow as much flexibility as possible in the range
of load balancing policies that are implementable. In order to distinguish PREMA from the software tools
that require global synchronization points, we will focus this discussion on the Work Stealing scheduling



policy which is provided with the PREMA distribution. Processors are paired with a single neighbor, with
whom mobile objects may be exchanged during load balancing. Once a processor determines that it is
underloaded (by comparing the local load level to an application-defined “water-mark”), a request message
is sent to the partner processor who determines if any work is available to contribute. If so, some number of
mobile objects? are uninstalled and migrated to the requesting processor. If no work is available, a negative
acknowledgement is returned, at which point the requesting processor may choose another partner.

The PREMA library allows load balancing to be initiated either explicitly or implicitly. The application
may explicitly hand control to the load balancer by posting a polling operation, which will check for incoming
application messages, schedule the next work unit for execution, evaluate the current local work level, and
process any system-generated load balancing messages. Alternatively, the runtime system may preempt
the application at periodic intervals and perform load balancing functions. Note that, even in the case of
preemptive load balancing, it is still necessary for the application to poll for its own messages.

4.1 Explicit Load Balancing

Explicit load balancing requires the application program to explicity hand control to the load balancing
algorithm. This is done with the polling operation, which is required for the reception and processing of
both application- and system-generated (load balancing) messages.

In addition to the delay often suffered by load balancing information and request messages due to the
inability to preempt an already executing work unit is the difficulty in choosing an appropriate water-mark
for triggering the initiation of load balancing. The threshold should be carefully selected in order to give the
application a “cushion” of pending work while load balancing proceeds. Due to adaptivity, however, it is
difficult to predict the computational weights of pending handler routines, which, in turn, makes predicting
a suitable low water mark difficult. This can mean that applications either run out of work, incurring idle
processor cycles, or begin load balancing before it is necessary, leading to mobile object “thrashing”.

4.2 TImplicit Load Balancing

PREMA is able to function in an implicit load balancing mode, in which the load balancer may preemptively
take control of the processor. This occurs during computationally-intense work units, when a polling thread is
spawned which will awake at predefined intervals to check for arriving load balancing information or request
messages. From the application’s point of view, load balancing messages arrive asynchronously at these
points.

However, load balancing messages that are processed preemptively in no way affect the execution of the
application. Work units that have begun execution are not migrated, and they must complete their execution
before subsequent work units are scheduled. Also, the single-threaded programming model implemented by
PREMA is preserved. By associating tags with messages, the runtime system is able to separate system-
generated messages from those generated by the application, leaving application messages to be handled
during application-posted polling operations. This means applications do not need to be concerned with
making themselves thread-safe.

Such a preemptive scheme provides two primary benefits. First is that load balancing messages can be
guaranteed to be received in a timely manner, ensuring that load balancing decisions will be based on up-
to-date information. The second is that the importance of the value of the low water mark is deemphasized.
Load balancing begins when the underloaded processor begins work on its last local work unit, regardless
of that work units size. In the event that the work unit finishes before new units arrive, the number of
wasted processor cycles is minimized. It is possible to use a platform-dependent threshold whose value can
be determined at runtime to eliminate even these cases. We will implement this optimization in our future
work.

2For particularly coarse-grained objects, a single mobile object may be migrated during load balancing; for finer-grained
computations, multiple mobile objects may be migrated.



5 Performance Evaluation

Both a synthetic benchmark program and a 3-dimensional parallel advancing front mesh generator are used
to evaluate the performance of each load balancing system. The benchmark program allows us to compare the
performance of the three load balancers we have selected under a variety of different program characteristics,
while the mesh generator allows us to see the performance of the PREMA system in a more “real-world”
scenario.

The benchmark program makes use of the following algorithm:

1. Command-line parameters are parsed to determine the number of work units, the minimum and max-
imum computational weight for each unit, and the initial imbalance percentage.

2. The work units are created and distributed to the available processors. For PREMA and ParMETIS,
this involves creating the appropriate number of data structures which represent the data subdomains,
and, in the case of PREMA, registering them with the runtime system as mobile objects. With
Charm++, a 1-dimensional chare array of the appropriate length is created. In this case, the run-
time system will initially distribute the array elements to the available processors. This phase of the
application is not considered in the final timing results.

3. Computation is assigned to each work unit. In the case of PREMA this involves each processor sending
messages to local work units which will invoke a computation handler. With Charm++, these messages
are sent using the chare array’s proxy object. Finally, as ParMETIS does not provide any message
passing functionality, the computation routines are invoked directly by each processor on local work
units. The amount of computation assigned to each subdomain is dependent upon that subdomain’s
global index and the initial imbalance percentage.

4. Finally, control is handed to the runtime system and the load balancer.

There is no communication between work units, and work units are able to execute in any order. Note
that the objective of this paper is to study the effectiveness and efficiency of load balancing framework for
highly adaptive applications. Collocation of objects for the purpose of improving data locality is primarily
the responsibility of the load balancing policy itself, and not of the framework itself. Therefore this study is
outside the scope of this paper.

We vary two parameters: the initial imbalance percentage and the difference in computational weights
between the heavy and lightly loaded work units. Note that because the imbalance is measured as a per-
centage of the total number of work units that are weighted heavily, different imbalance percentages mean
a different total amount of computation performed by the application. Therefore, we must restrict our
analysis to comparing the performance of different load balancing methods on the same problem, and avoid
discussions of the performance of a particular method on two problems with differing initial characteristics.
The data shown represent two values for each parameter. The initial imbalance is either 50% or 10%, and
the heavy work units have a computational weight that is either double that of the lighter work units, or
20% heavier. In addition, in order to more accurately simulate the conditions found in a highly adaptive
applications, those load balancing methods which rely on application-supplied hints to predict future work
loads are often intentionally fed inaccurate information. This is due to the difficulty adaptive applications
have in predicting the work loads of pending work units.

Because of the differences in each load balancing method, load balancing proceeds differently for each
test case. PREMA provides for completely asynchronous load balancing, while ParMETIS and Charm++
require synchronization points in order for load balancing to begin. The number of synchronization points
can have an impact both on the overall quality of the load balancing, as well as on the overhead attributable
to the runtime system. In the case of the ParMETIS tests, load balancing does not begin until a particular
processor’s work load falls below a threshold®. At this point, the “root” processor is notified, and the
load balancing procedure begins. The root processor is kept aware of which work units have completed as
the program progresses, and is therefore able to make a determination of whether or not there is enough

3The threshold used in the ParMETIS tests is the same as what is used in the PREMA single-threaded and multi-threaded
test cases. Charm++, because of its runtime performance profiling, does not rely on water-marks.
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Figure 3: Benchmark performance for 50% initial imbalance, with the computational weight of heavy work
units double that of lighter ones. (a) No Load Balancing, (b) PREMA with explicit load balancing, (c)
PREMA with implicit load balancing, (d) ParMETIS, (e) Charm++ with no synchronization, and (f)
Charm++ with 4 synchronization points.

outstanding work in the system to warrant load balancing. If so, the root node sends a message to all
processors asking them to exchange work load information. Once this all-to-all communication phase is
complete, each processor makes use of the ParMETIS library to calculate a new partition (re-partitioning),
and then migrates work units accordingly.

Charm++ provides no provision for such a water-mark scheme, so load balancing must be performed
incrementally. We must first decide how many load balancing iterations we want during the course of the
application (I). This determines the size of the chare array which will contain our work units (). The
program begins by sending a message to each entry in the chare array to invoke a work unit. After the work
unit completes, it checks to see how many times it has executed. If this number is less than I, then the
AtSync() routine is used to signal a load balancing point has been reached. Once all entries in the chare
array have reached the AtSync() operation, load balancing begins.

We evaluate the performance of each load balancing scheme in terms of two criteria: (1) its success in
minimizing the overall runtime, and (2) the quality of the load distribution after load balancing. From the
application’s viewpoint, it is typically the overall runtime which is of the greatest interest. However, the
quality of the load balancing will give some indication as to the success of the particular method’s ability to
contend with various symptoms of adaptivity, such as dramatic increases in work load in a localized area of
the data domain. In addition, load balancing quality can be of interest to any stages that come later in the



execution chain.

Figure 3 contains the performance breakdowns for the benchmark program with 50% of the work units
comprised of tasks which require approximately 500 Mflops of computation (referred to as computationally
“heavy”), and the remaining 50% composed of work units which require approximately 250 Mflops*. PREMA
with preemptive message arrival is the overall performance winner, although ParMETIS also does well. Two
factors account for ParMETIS’ performance. First, the heavier work units are an integral factor of two
times the weight of the lighter units, implying that when an even number of work units finish execution
(on an individual processor), a heavier work unit is also finishing. This helps to reduce the synchronization
overhead. However, it should be noted that this is due to the construction of the particular benchmark test;
other tests can be constructed in which this is not the case and which lead to higher synchronization costs.
Second, with 50% of the work units rated as “heavy”, there is a large amount of pending work awaiting
execution once load balancing begins. This allows ParMETIS to create a high quality partitioning.

PREMA with preemptive message arrival represents an overall runtime savings of 30% over no load
balancing at all, and 7.3% over load balancing using ParMETIS, the next quickest total runtime. In addition,
PREMA using implicit load balancing outperformed PREMA with explicit load balancing and Charm++
with no synchronization points by roughly 30%.

With highly adaptive applications, it is often the case that workload levels will “spike” in a relatively
localized portion of the overall data domain. To simulate this, we ran our benchmark program with only 10%
of the work units rated as “heavy”, with the remaining 90% being “light”. Figure 4 depicts the results of this
test. Again, PREMA with implicit load balancing is the winner in terms of overall runtime. However, in this
case ParMETIS did not perform so well, due to the fact that less work remained for execution by the time
processors began to cross the underloaded threshold. In this case, ParMETIS was unable to calculate an
effective partitioning, and mandated that work units remain on the processors on which they were originally
assigned.

Using the standard deviation of the computation times across each processor, we can examine the quality
of the load distribution after load balancing. Again, the most successful method is PREMA with preemptive
message arrivals, with a standard deviation of just over 10. Charm++ and PREMA with explicit load
balancing, which are based on load balancing messages arriving at specified points of operation, performed
comparably with standard deviations of 128 and 100, respectively.

While dealing with drastic imbalance “spikes” is important for a load balancer when faced with highly
adaptive applications, many applications suffer from less severe forms of imbalance. Figures 5 and 6 repeat
the tests shown in Figures 3 and 4, but are different in that the work units rated as computationally “heavy”
are only 20% heavier than the rest. Overall runtime and the quality of workload distribution are important
in this case, just as before. However, because less load migration is possible, the overhead attributable to
the runtime system becomes an important factor.

In the case of load balancing methods that rely on global synchronization points being used to balance
asynchronous applications, the cost of the synchronization must be taken into effect. This cost, taken over
all processors, relates to the number of processors in the parallel system, the imbalance percentage, and the
difference in computational weight between “heavy” work units and lighter ones. For the case of ParMETIS,
in Figure 5(d) this comes out to 7.4% of the useful computation time, while in Figure 4(d) this figure swells
t0 29.9%.

Because PREMA combined with preemptive load balancing message processing does not require even
localized synchronization, this figure is much lower. Furthermore, the overhead attributable to the PREMA
system remains constant, regardless of the characteristics of the application. For the same two tests, (Fig-
ures 5(c) and 4(c)) PREMA overhead works out to 0.045% and 0.029% of the useful computation time.

In addition to the benchmark data presented here, we have used our PREMA framework combined with
preemptive load balancing to study a 3-dimensional tetrahedral parallel advancing front mesh generator.
While we have not yet had the opportunity to study this application in the context of Charm++, we
have demonstrated a 15% overall runtime improvement over stop and repartition techniques, and a 42%
improvement over no load balancing [1]. At the same time, the overheads attributable to the PREMA
runtime system are again well under 1% of the total runtime.

4The platform on which all experiments were executed consists of 128 333MHz Ultra Sparc 2i machines, connected by Fast
Ethernet and utilizing the LAM [13] implementation of MPI.

10



2000

2000 — 2000 ‘

T T T T T
1 Idle Time

T T
I Idle Time

I ldle Time Messaging Time Messaging Time
| Computation Time | Scheduling Time | Scheduling Time
1500 I Callback Routine Time 1500+ I Callback Routine Time

Polling Thread Time
| Computation Time

| Computation Time

seconds)

<

Time (seconds)
—
1<
8
3
Time (seconds)
—
1<
8
3
T
L

Time

16 32 4 64 8 9% 112 128 48 64 80 % 16 32 4 64 8 9% 112
Processor ID Processor ID Processor ID

(a) (b) (c)

2000 T T T 2000 T T T T T T

1" Idle Time o 1 Idle Time I ldleTime
I Partition Calculation Time | Computation Time | Computation Time
| Synchronization Time
| Computation Time

Time (seconds)
—
s
S
S
Time (seconds)
—
S
S
S
Time (seconds)

16 32 48 64 80 9 112 128 16 48 64 8 9% 112 128 2 48 64 8 9% 112 128
Processor ID Processor ID Processor 1D

(d) (e) (f)

Figure 4: Benchmark performance for 10% initial imbalance, with the computational weight of heavy work
units double that of lighter ones. (a) No Load Balancing, (b) PREMA with explicit load balancing, (c)
PREMA with implicit load balancing, (d) ParMETIS, (e) Charm++ with no synchronization, and (f)
Charm++ with 4 synchronization points.

6 Conclusions and Future Work

We have presented a runtime software system for implementing asynchronous and highly adaptive and
irregular applications on distributed memory platforms. Our framework and its implementation are based
on the flexible active messages communication paradigm, global name space, transparent object migration,
automatic message forwarding for ease of use, and preemptive information dissemination and decision making
for effective load balancing. Our performance data from a synthetic benchmark program and a 3-dimensional
parallel mesh generation application suggest that our approach is effective in terms of minimizing idle cycles
due to work load imbalances and efficient in terms of the overhead introduced during work load balancing for
asynchronous and highly adaptive applications. The major contribution of this work is the implementation
of an efficient runtime library that provides support for the efficient implementation of adaptive and irregular
applications without relying on explicit and global synchronization for dynamic load balancing; to the best
of our knowledge it is the only runtime system within the scientific community that effectively solves the
dynamic load balancing problem for asynchronous and highly adaptive and irregular applications.

Our next goal is to extend this work so that we can present a unified method for solving the load balancing
problem for end-to-end applications that consist of both asynchronous, highly adaptive computation phases,
such as parallel mesh refinement, and loosely synchronous computation phases such as parallel sparse iterative
field solvers. In this context, we plan to investigate within our existing framework the development of load
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Figure 5: Benchmark performance for 50% initial imbalance, with the computational weight of heavy work
units 20% higher than that of lighter ones. (a) No Load Balancing, (b) PREMA with explicit load balancing,
(c) PREMA with implicit load balancing, (d) ParMETIS, (e) Charm++ with no synchronization, and (f)

Charm++ with 4 synchronization points.

balancing policies that maximize data-locality while minimizing node work load imbalances.
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