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Abstract Current neurosurgical procedures utilize medical images of various modal-
ities to enable precise location of tumor and critical brainstructures for the purposes
of planning accurate brain tumor resection. The practical difficulty of using pre-
operative images during the surgery is caused by the intra-operative deformation
of the brain tissue (brain shift), which introduces discrepancies with respect to the
pre-operative configuration. Intra-operative imaging allows tracking of such defor-
mations, but cannot fully substitute for pre-operative data. Non-Rigid Registration
(NRR) is a complex time-consuming image processing operation that allows the ad-
justment of the pre-operative image data to account for intra-operative brain shift.
We review computational aspects of a specific method for registering brain MRI
to enable its evaluation during image-guided neurosurgery, and consider different
strategies for parallelizing this NRR method. We show that the implementation we
develop not only allows the delivery of NRR results within the clinical time con-
straints improving NRR speed, but also provides the potential of improving the ac-
curacy of registration by utilizing distributed Grid resources for distributed search
of optimum parameters for the NRR method. In this context, wedescribe a concept
of a dynamic data driven environment for highly distributednon-rigid registration
calculations. We present initial results of using nationalcyberinfrastructure as a plat-
form for such environment, and outline the major challengesin integrating it with
the operating rooms of the future.
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1 Introduction

Cancer is one of the leading causes of death both in the USA andaround the world.
Among the different types of cancer, brain cancer was estimated to claim over 50
thousand new victims in 2008 [1]. Neurosurgical resection is one of the most com-
mon and effective treatment options for brain tumor patients. It is crucial that the
resection removes as much as possible of the tumor tissue, while maximally pre-
serving the vital structures of the healthy brain. Maximal tumor excision increases
time to progression, reduces symptoms and seizures In this Chapter we explore how
the concept of Dynamic Data Driven Application Systems (DDDAS) [22], together
with the advances in medical image acquisition and distributed computing, can as-
sist in enabling image guidance during neurosurgery and potentially can improve
the accuracy of the procedure, allowing more complete tumorresections without
additional morbidity.

Fig. 1 Intra-operative brain deformation. Left: pre-operative,higher quality image, showing the
location of brain tumor. Right: intra-operative image showing brain shift [3].

There are two major challenges in accomplishing the objectives of neurosurgery.
First, it is not possible to distinguish between the tumor and non-tumor tissue with
the naked eye for certain kinds of tumors. Second, the exact locations of the brain
areas that are responsible for the critical brain function,e.g., the motor cortex, are
patient-specific, and, again, cannot be identified with the naked eye. This is where
medical imaging becomes essential.

Magnetic Resonance Imaging (MRI) is indispensable in demonstrating brain
pathologies. Although not distinguishable with the naked eye, neoplastic tissues can
be differentiated from brain tissue based on changes in MR signal and corresponding
image intensities. MRI has also been shown to be useful in constructing functional
mapping of the brain using functional MRI (fMRI) [15]. Both the structural and
functional imaging data are used for the purposes of improving the precision of the
resection.

Image registration in general is concerned with spatial alignment of correspond-
ing features in two or more images. During image registration, a spatial transfor-
mation is applied to one image, which is calledfloating, such that it is brought into
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alignment with thetarget, or referenceposition of the object. During rigid image
registration, the floating image corresponds to the pre-operative image, which is
aligned with the position of the patient using translationsand rotations (rigid trans-
formations).

During the course of surgery, opening of the skull and dura causes changes in
pressure inside the Intra-Cranial Cavity (ICC). Because ofthis and other factors,
such as drainage of cerebrospinal fluid, induced changes in brain tumor, and the ef-
fect of gravity, the brain changes its shape, introducing discrepancies in relation to
the pre-operative configuration.Non-rigid image registration uses spatially varying
transformation to account for this deformation. In general, image registration algo-
rithms are based on optimization of certain similarity criteria between the fixed and
floating image under varying parameters of spatial transformation. The complexity
of this optimization depends on the number of parameters that describe the trans-
formation. Both rigid and non-rigid registration are open research areas in medical
image processing. However, non-rigid registration is a conceptually more difficult
problem, which usually requires significant computing resources and time.

Non-rigid registration recovers the deformation of the brain based on the intra-
operatively acquired imaging data. Recent advances in medical image acquisition
have made it possible to acquire high resolution images, in particular MRI, during
the surgery. Intra-operative MRI (iMRI) cannot substitutepre-operative images be-
cause of its limited resolution and the high processing timerequired to obtain func-
tional data. However, iMRI can be used to guide registrationof the pre-operative
data.

There are three main requirements to non-rigid registration (NRR) [9]. First,
NRR should deliver accurate results. Second, the result should be consistently accu-
rate independent of the specific images being registered, and should not be sensitive
to small variations in the parameter selection. Finally, a requirement that is spe-
cific to IGNS is that registration should meet the time constraints required by the
neurosurgical workflow, which is usually 5-10 minutes.

Prospective application of NRR is a dynamic process. iMRI isobtained period-
ically as requested by the surgeon. Immediately following iMRI, NRR should be
used to estimate the deformation of the brain and update the pre-operative images.
Usually, hospitals do not have locally available large-scale computational facilities.
In this Chapter we describe an infrastructure that enables computation of non-rigid
registration using remotely located high performance computing resources, guided
by intra-operative image updates.

2 Related Work

The research in NRR for IGNS can be separated into the development of the core
registration methods, and design of end-to-end systems, that are capable to sup-
port NRR computation and deliver the results intra-operatively. The choice of the
NRR method depends mostly on the intra-operative image modality that captures
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brain deformation [11]. However, the core computation components of NRR are
very similar for different intraoperative imaging modalities.

Registration algorithms are based on optimizing certain similarity measure be-
tween the intensities of the reference and floating images. In non-rigid registration,
the number of parameters (degrees of freedom) that are beingoptimized is exceed-
ingly large compared to rigid registration. This contributes significantly to the costs
of computing the similarity metric and to the evaluation of gradients required dur-
ing optimization. However, optimization of the similaritymeasure alone can lead to
unrealistic solutions, since non-rigid registration is anill-posed problem. Therefore,
NRR usually include some form of solution regularization. Biomechanical model-
ing of the tissue deformation is one of such regularization approaches. Deformation
of tissue is usually modeled using the Finite Element Method(FEM) [36], which
requires solving a system of equations. The size of this system is proportional to the
resolution of the brain biomechanical model.

Timely completion of the core NRR computations is the key component for the
efficient end-to-end registration systems. A number of strategies have been proposed
to parallelize the time-consuming steps in medical image processing. Christensen
and collaborators were some of the first to discuss the use of parallel computing
resources for solving time-consuming problems related to brain MRI processing on
a massively parallel SIMD architecture [8]. Warfield et al. [32] presented some of
the first results in intra-operative processing (segmentation) of iMRI. The authors
demonstrate linear speedup of segmentation on a 20-processor workstation, which
allows processing of a typical dataset in about 20 seconds. Remarkably, the devel-
oped method was subsequently applied and evaluated prospectively during neuro-
surgeries and liver cryo-ablation procedures [33]. The same group later developed a
high-performance method for intra-operative non-rigid registration, which uses lin-
ear biomechanical model [31] solved in parallel. Although the authors report clin-
ically acceptable timing results delivered by their implementation, the evaluation
was restricted to off-line experimental studies.

Computation of the NRR result within the time constraints ofneurosurgery is
an essential requirement. In order to facilitate this task,support of the computa-
tion on the remote resources may be required. These issues have been recognized
by the community, and a number of solutions have been proposed. Stefanescu et
al. [29] describe an NRR implementation that is exposed as a web service. Ino et
al. developed an end-to-end system for rigid registration computation on a remote
cluster [16]. Lippman and Kruggel use a customized grid infrastructure to design an
NRR system for IGNS [18].

To the best of our knowledge, none of the systems developed todate was used
prospectively during image-guided neurosurgeries. Our approach to the develop-
ment of such dynamic data-driven NRR system for IGNS (NRR DDDAS) is to
adopt an existing NRR method of established accuracy. Next,we parallelize the
most time-consuming components of this method, and developan end-to-end sys-
tem to facilitate image guidance during neurosurgery.
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3 Physics-Based Non-Rigid Registration

The core registration method of our dynamic infrastructurewas originally devel-
oped by Clatz et al. in [9]. This NRR approach is specifically designed for register-
ing high-resolution pre-operative data with iMRI. The NRR computation consists
of preoperative and intra-operative components. Intra-operative processing starts
with the acquisition of the first iMRI. However, thetime-critical part of the intra-
operative computation is initiated when a scan showing shift of the brain is available.
The basic idea of the registration method is to estimate thesparse deformation field
that matches similar locations in the image, and then use biomechanical model of
brain deformation to discard unrealistic displacements and derivedense deformation
filed that defines transformation for each point in the image space.

Sparse displacement vectors are obtained at the selected points in the image,
where the variability in the intensities in the surroundingregion exceeds some
threshold. Suchregistrationpoints can be identified prior to the time-critical part
of the computation in the floating (pre-operative) image. Once the reference (intra-
operative) scan is available, the deformation vector is estimated at each of the se-
lected points by means of block matching. Fixed size rectangular regions (blocks)
centered at the registration points are identified in the floating image. Given such
a block, we next select a search region (window) in the reference image. The dis-
placement of the block that maximizes intensity-based similarity metric between
the image intensities in the block and the overlapping portion of the window corre-
sponds to the vector value of the sparse deformation field at the registration point.
The normalized cross correlation (NCC) similarity metric is evaluated as follows:

NCC=
∑i∈B(BT(i)− B̄T)(BF(i)− B̄F)
√

(BT(i)− B̄T)2(BF − B̄F)2
.

B̄T andB̄F correspond to the average intensity values within the blockin the refer-
ence and floating image respectively. We note the high computational complexity of
the block matching procedure. Considering the sizes of three-dimensional block and
window are defined in pixels asB = {Bx,By,Bz} andW = {Wx,Wy,Wz}, the bound
on the number of operations isO(BxByBz×WxWyWz) for one registration point.

Estimation of brain deformation is based on the finite element analysis (FEA) us-
ing linear elastic model of brain deformation. The finite element mesh of the intra-
cranial volume is constructed from the segmented ICC volumefollowing the meth-
ods we evaluated in a separate study [13]. We then iteratively seek such a position of
the mesh verticesU that balances the mechanical forces of the modeled tissue that
resist deformation, with the external forces, that correspond to the displacementsD
estimated by block matching:

Fi ⇐ KUi , Ui+1 ⇐ [K + HTSH]−1[HTSD+ Fi].

Here,K is the mechanical stiffness matrix [10],H is the interpolation matrix from
the mesh vertices to the block matching displacements,S is the matrix that captures
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the confidence in the block matching results.F is the force that is increasing between
iterations to slowly cancel the influence of the mechanical forces.

Both block matching and iterative estimation of displacements are time critical
and should be performed while the surgeons are waiting. Block matching contributes
most to the computation costs, because of the exhaustive search for optimum block
position. Iterative estimation of mesh vertex displacements based on biomechanical
model requires solution of a system of linear equations during each iteration. How-
ever, the size of that system is constrained by the number of mesh vertices, which
cannot be arbitrarily large due to inherent properties of the NRR algorithm [13].

In the context of the application, we define theresponse timeas the time between
the acquisition of the intra-operative scan of the deformedtissue and the final visu-
alization of the registered preoperative data on the console in the operating room.
These steps performed intra-operatively form the Dynamic Data-Driven Application
System steered by the periodic acquisitions of the iMRI data. Our broad objective is
to minimize the perceived (end-to-end) response time of theDDDAS component.

4 High Performance DDDAS Infrastructure for Non-Rigid
Registration

The baseline code used in the design of the NRR was the implementation developed
and evaluated by Clatz et al. [9]. Based on the benchmarking and analysis of this
implementation, we identified the following problems:

1. The execution time of the original non-rigid registration code is highly data-
dependent. When computed on a high-end 4 CPU workstation, the computation
time varies between 30 and 50 minutes. The scalability of thecode is poor due
to work-load imbalances.

2. The code is designed as a single monolithic component (since it was not evalu-
ated in the intraoperative mode), and a single failure at anypoint requires restart-
ing the registration from the beginning.

3. The original code is implemented in PVM [5] which is not widely supported as
compared to the use of MPI [28] for message passing.

Consequently, we identified the following implementation objectives in the de-
sign of the system.

High-performance Develop an efficient and portable software environment for
parallel and distributed implementation of real-time non-rigid registration method
for both small scale parallel machines and large scale geographically distributed
Clusters of Workstations (CoWs). The implementation should be able to work on
both dedicated, and time-shared resources.

Quality-of-service (QoS) Provide functionality not only to sustain failure but
also to dynamically replace/reallocate faulty resources with new ones during the
real-time data acquisition and computation.
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Ease-of-use Develop a GUI which automatically will handle exceptions (e.g.,
faults, resource management, and network outages), and assist in the parameter ini-
tialization.

Different strategies can be explored in high performance implementation of the
described NRR method. We first explore how this can be done using ubiquitous
CoWs. The CoW-based implementation was used prospectivelyduring the recent
studies of NRR at BWH [2]. We also describe our recent effortsto further in-
crease the availability of the implementation by developing its components ported
on Graphical Processing Units (GPUs) and studying the use ofGrid resources.

We develop NRR DDDAS based on the concept of thecomputational workflow.
We re-design the core NRR implementation as a coordinated set of processing com-
ponents that communicate by passing data. Such approach allows to separate time-
critical steps, and concentrate on the optimum parallelization strategies for each
individual step that requires performance improvement.

4.1 Cluster of Workstations

In the recent years CoWs have become power-plants of ubiquitous computing.
Availability of such cluster at the College of William and Mary (CWM, Williams-
burg, VA) motivated the development of the implementation of the CoW-based NRR
DDDAS. In addition to the dedicated computing cluster, we use the shared resources
of a computer lab to boost computing power and reliability ofthe implemented
system. The targeted users of our DDDAS are clinical researches of Brigham and
Women’s Hospital (BWH, Boston, MA). Our approach is to map the components of
the workflow on the computing and communication resources ofCWM and BWH,
and expose the DDDAS to the clinical researchers by means of aweb service inter-
face. The timeline of the interaction with the complete NRR DDDAS is shown in
Figure 2. The key component of this system, which requires parallelization, is block
matching.

Multi-level distributed block matching In order to find a match for a given
block, we need the block center coordinates, and the areas ofthe fixed and floating
images bounded by the block matching window [9]. The fixed andfloating images
are loaded on each of the processors during the initialization step, as shown in Fig. 2.
The total workload is maintained in awork-pooldata structure. Each item of the
work-pool contains the three coordinates of the block center (total number of blocks
for a typical dataset is around 100,000), and the best match found for that block (in
case the block was processed; otherwise that field is empty).

However, because of the scarce resource availability we have to handle computa-
tional clusters that belong to different administrative domains. We address this issue
with hierarchical multi-level organization of the computation using master-worker
model. A dedicated master node is selected within each cluster. The master main-
tains a replica of the global work-pool, and is responsible for distributing the work
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Fig. 2 Timeline of the image processing steps during IGNS (the client is running at BWH, and
the server is using multiple clusters at CWM, for fault-tolerance purposes).

according to the requests of the nodes within the assigned cluster, and communicat-
ing the execution progress to the other master(s).

Multi-level Dynamic Load Balancing The imbalance of the processing time
across different nodes involved in the computation is caused by our inability or
difficulty to predict the processing time required per blockof data on a given ar-
chitecture. The main sources of load imbalance areplatform-dependent. These are
caused by the heterogeneous nature of the PEs we use. More importantly, some
of the resources may be time-shared by multiple users and applications, which af-
fect the processing time in an unpredictable manner. The (weighted-) static work
assignment of any kind is not effective when some of the resources operate in the
time-shared mode.

We have implemented a multi-level hierarchical dynamic load balancing scheme
for parallel block matching. We use initial rough estimation of the combined com-
putational power of each cluster involved in the computation (based on CPU clock
speed) for the weighted partitioning of the work-pool and initial assignment of work.
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However, this is a rough “guess” estimation, which is adjusted at runtime using
a combination of master/worker and work-stealing [6, 34] methods. Each master
maintains an instance of the global work-pool. Initially, all these pools are iden-
tical. The portion of the work-pool assigned to a specific cluster is partitioned in
meta-blocks (a sequence of blocks), which are passed to the cluster nodes using the
master-worker model. As soon as all the matches for a meta-block are computed,
they are communicated back to the master, and a new meta-block is requested. In
case the portion of the work-pool assigned to a master is processed, the master con-
tinues with the “remote” portions of work (i.e., those, initially assigned to other
clusters). As soon as the processing of a “remote” meta-block is complete, it is
communicated to all the other master nodes to prevent duplicated computation.

Multi-Level Fault Tolerance Our implementation is completely decoupled,
which provides the first level of fault tolerance, i.e., if the failure takes place at
any of the stages, we can seamlessly restart just the failed phase of the algorithm
and recover the computation. The second level of fault tolerance concerns with the
parallel block matching phase. It is well-known that the vulnerability of parallel
computations to hardware failures increases as we scale thesize of the system. We
would like to have a robust system which in case of failure would be able to con-
tinue the parallel block matching without recomputing results obtained before the
failure. This functionality is greatly facilitated by maintaining the previously de-
scribed work-pool data-structure which is managed by the master nodes.

The work-pool data-structure is replicated on the separatefile-systems of these
clusters, and has a tuple for each of the block centers. A tuple can be either empty,
if the corresponding block has not been processed, or otherwise it contains the three
components of the best match for a given block. The work-poolis synchronized
periodically between the two clusters, and within each cluster it is updated by the
PEs involved. As long as one of the clusters involved in the computation remains
operational, we are able to sustain the failure of the other computational side and
deliver the registration result.

Ease-of-use The implementation consists of the client and server components.
The client is running at the hospital site, and is based on a Web-service, which
makes it highly portable and easy to deploy. On the server side, the input data and ar-
guments are transferred to the participating sites. Currently, we have a single server
responsible for this task. The computation proceeds using the participating available
remote sites to provide the necessary performance and fault-tolerance.

We applied the developed NRR DDDAS for registering seven image datasets
acquired at BWH. The computations for two of these seven registration computa-
tions were accomplished during the course of surgery (at theCollege of William
and Mary), while the rest of the computations were done retrospectively. All of the
intra-operative computations utilizedSciClone(a heterogeneous cluster of worksta-
tions located at CWM, reserved in advance for the registration computation) and
the workstations of the student lab (time-shared mode). Thedetails of the hardware
configuration can be found in [7]. Data transfer between the networks of CWM
and BWH (subnet of Harvard University) are facilitated by the Internet2 backbone
network with the slowest link having bandwidth of 2.5 Gbps.
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Table 1 Response time (sec) of the intra-surgery part of the CoW-based NRR DDDAS at various
stages of development.

Setup ID
1 2 3 4 5 6 7

High-end workstation, using original 1558 1850 2090 2882 2317 2302 3130
PVM implementation
SciClone (240 procs), 745 639 595 617 570 550.4 1153
no load-balancing
SciClone (240 procs) and
CS lab(29 procs), dynamic 2-level 30 40 42 37 34 33 35
load-balancing and fault-tolerance

The evaluation results are summarized in Table 1. We were able to reduce the
total response time to 2 minutes (4 minutes, including the time to transfer the data).
We showed, that dynamic load balancing is highly effective in time-shared envi-
ronment. Modular structure of the implemented code greatlyassisted in the overall
usability and reliability of the code. The fault-tolerancemechanisms implemented
are absolutely essential and introduce a mere 5-10% increase in the execution time.

4.2 Grid Computing Resources

In the last decade, significant effort has been focused on development of the support-
ing standards and software for Grid computing, deploying production grid systems
worldwide and porting applications on those systems. One such production system
under continuous improvement and development is USA-basedTeraGrid [23]. As
of May 2007, TeraGrid was connecting 11 high-end computational sites within the
USA, providing “...more than 250 TFLOPS of computing capability and more than
30 petabytes of storage” and therefore making TeraGrid “...the world’s largest, most
comprehensive distributed cyberinfrastructure for open scientific research” [23].
Currently, TeraGrid connects 11 computational centers providing cumulative peak
performance of 1124 teraflops. The capabilities of TeraGridare continuously grow-
ing, providing computational and storage resources otherwise unavailable to any
single research institution worldwide.

There are two major advantages of using the Grid infrastructure for NRR DDDAS.
First, the implementation is not restricted to run on a specific cluster resource. With
the multiple computing centers participating in TeraGrid,temporary resource out-
ages are more feasible to tolerate. Second, complex image processing methods, like
NRR, often require proper setting of the large number of parameters in order to
achieve optimum accuracy. Identification of such parametercombination is a non-
trivial task. One approach to selecting the optimum parameter combination is to
usespeculative computation[16], when multiple instances of NRR are computed
in parallel with different parameter settings. In this regard, we have developed ini-
tial accuracy assessment solutions [12] to facilitate intra-operative speculative NRR
over the Grid. In out Grid NRR DDDAS, we leverage the CoW-based implementa-
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tion, augment it with the automatic error estimation, and develop a framework for
speculative execution of NRR on the TeraGrid.

While TeraGrid resources can be accessed directly for individual job submis-
sion and data transfer, doing this manually on the large scale or as part of workflow
execution is not practical. We adopted Swift workflow scripting and management
system [35] to implement and deploy NRR workflow. Swift has been developed and
evaluated to support grid implementations that are based onGlobus Toolkit, which
allows to use this system without any modifications to schedule workflows on Tera-
Grid. SwiftScript, the scripting language used for workflowdefinition, is a powerful
way of abstracting interaction of the processing tasks, which allows to define com-
posite data inputs, dependencies between the processing tasks, and provides familiar
control structures like loops and conditional structures,which allow flexible control
over workflow definition and execution.

Fault-tolerance and dynamic load-balancing are importantcharacteristics of NRR
DDDAS. Swift implements basic fault-tolerance of workflow execution at the indi-
vidual task level, which is critical for NRR computations. In case a particular task
fails to deliver the output, Swift will re-schedule its execution, possibly on a dif-
ferent site. Task-level load-balancing is also provided bythe Swift infrastructure.
The execution traces for the same computational task are continuously collected
and used to dynamically select the best performing site whenthe task is scheduled
again.

Swift provides the means to define and execute the workflow, which consists of
individual processing tasks. Each of the processing tasks must be available as an ex-
ecutable at each of the sites, that will be involved in the workflow computation. The
details of running a specific task are provided to Swift in theso calledtranslation
catalog available at the client (submission) site. The translationcatalog contains
the identifier of the remote site where the executable is installed, together with the
optional information on its invocation.

Fig. 3 NRR workflow diagram for single registration execution (shaded are the time-critical com-
ponents of the workflow).

The NRR workflow diagram of a single NRR procedure together with the ac-
curacy assessment module is shown in Figure 3. The block matching task is par-
allelized using MPI, and has been deployed on the TeraGrid sites for remote par-
allel execution. The other components of the workflow are executed on the local
resources (single node of the CWM SciClone cluster). This NRR workflow corre-
sponds to the base case for computation supported by our cluster-based implemen-
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tation we discussed earlier, augmented with the accuracy assessment module. The
accuracy assessment module of the Grid-based NRR DDDAS was developed sepa-
rately [12]. This module allows to automatically estimate the registration error. The
construction of the workflow for speculative execution is straightforward with the
scripting capabilities of Swift. This allows us to study theimpact of some of the
parameters on the registration accuracy.

Table 2 Absolute improvement in accuracy (mm) evaluated at selected landmarks using optimal
values of block size and outlier rejection rate.

Case 1 2 3 4 5 6 7 8 9 10 11 12
1 0.2 0.1 0.2 0.2 0.3 0.1 0.3 0.4 0.0 0.2 0.2 0.3
2 0.2 0.0 0.0 0.0 0.2 0.3 0.3 0.2 0.5 0.3 0.1 0.2
3 0.6 1.0 0.2 2.9 0.0 0.1 0.3 – – – – –
4 0.9 0.8 0.2 0.4 0.7 0.5 0.7 0.4 0.3 0.7 0.7 –
5 0.0 0.3 0.0 0.0 0.8 0.5 0.4 0.0 0.3 0.4 – –
6 0.2 0.1 0.2 0.1 2.0 0.1 0.0 0.1 – – – –

We considered the impact of varying the block size and outlier rejection rate on
the accuracy of NRR on retrospective clinical data. Table 2 summarizes the im-
provement in accuracy evaluated at the expert-selected anatomical landmarks with
the optimum combination of these two parameters, as compared to their default set-
tings. Based on the experimental data, in most cases, good registration accuracy is
achieved using the default parameters suggested by Clatz etal. [9]. However, in Case
3 the improvement of registration accuracy was significant.In both cases, however,
there were landmark points, where registration error exceeded voxel dimensions.
The analyzed data also suggests, that the optimum value of outlier rejection is var-
ied in different locations of the image. For example, if we consider landmarks 5 and
12 in Case 1, the optimal combination of the studied parameters is different in each
case, as we show in Figure 4.

Fig. 4 Influence of the block size and rejection rate on landmark error: case 1, landmark 5 (top),
and case 1, landmark 12 (bottom).
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4.3 Graphical Processing Units

Graphics Processing Unit (GPU), an inexpensive, single-chip, massively parallel
architecture, have shown orders of magnitude higher throughput and performance
per dollar than traditional CPUs. In addition, a GPU can be easily deployed in the
Operating Room as a co-processor of CPU without hindering routine surgical op-
erations. In recent years, some researchers have made efforts to accelerate NRR
using GPU [25, 20, 30, 17]. However, to satisfy the requirement for the accuracy
and real-time in clinic a more advanced GPU based NRR is imperative.

The workflow implementation of NRR DDDAS allows us to use bestparalleliza-
tion strategies for individual components. Block matchingcomponent is embar-
rasingly parallel, which makes it highly amenable to GPU parallelization. We use
CUDA programming model [24] to develop the GPU implementation of this com-
ponent. CUDA organizes GPU threads in grid, which is an arrayof blocks and each
block is an array of threads. Kernel is the core code to be executed on each thread,
which performs on different sets of data using its ID in a SIMDfashion. CUDA
programming model can be treated as two levels loop: block level and thread level.
In the following code, the outer loop can be parallelized using GPU on the thread
block level. Computation of the similarity metric for an image block (inner loop) is
parallelized on GPU thread level, while the similarity metric computation is done
on CPU:

1: for each image blockf blk in floating imagedo
2: define search windowsw in fixed image
3: for each image blocktblk in swdo
4: calculate similaritysbetweenf blk andtblk
5: end for
6: find the maximumsand corresponding displacement
7: end for

This GPU-based implementation of block matching can gain a speed up of about
10, as we show in Figure 5, compared to CPU. The speed up is measured at seven
different image block sizes. Figure 5 clearly shows that GPUrunning time increases
linearly as we increase the block size, but CPU exhibits a super linear behavior.

Optimization of GPU codes is particularly important, sincethere are numerous
parameters of the execution environment, which can affect performance. Signifi-
cant evidence exists that there can be orders of magnitude performance difference
depending on the level of optimization for GPU implementations [4, 26, 27]. The
search space generated by the execution configuration is so large that it is not prac-
tical to find the optimal parameters by trial-and-error. Several recent studies trackle
this problem through empirical search-based approaches [27, 19]. We utilize the
method provided in [19] to optimize the GPU execution configuration for block
matching and improve speedup further, as shown in Figure 6. We observe speedup
of about 30 when comparing optimized and non-optimized implementations.
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5 Discussion

We have described the use of Dynamic Data Driven ApplicationSystems for Im-
age Guided Neurosurgery, enabled by the advances in medicalimage acquisition
and parallel/distributed computing. The DDDAS concept,for the first time ever in
clinical practice, helped us to complete and present non-rigid registration results to
neuro-surgeons at BWH during tumor resection procedures using image landmark
tracking across the entire brain volume.Using NRR DDDAS we were able to re-
duce the total response time of the time-critical computation component to about
35 sec, therefore delivering effective speedup of nearly 100, as compared to the
original sequential implementation of the code. In order toachieve this, we used
remotely (at CWM) several CoWs with the total of 269 processors [7] (the trans-
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fer of data from CWM to the operating room in BWH takes between3 to 5 min).
Our preliminary data suggest that we might be able to improvethe accuracy of the
NRR method by performing speculative execution [14] on the TeraGrid which is
capable to deliver about 250 TFLOPS. This computing power translates into tens
of thousands of registrations (with different parameters)in almost real-time, if there
is a proper coordination with all sides to avoid scheduling conflicts. However, this
requires availability of network connection between the operating room and remote
computing resources. Also, the imaging data must be anonymized prior to transfer
to address the confidentiality concerns.

Our next goal is to meet the real-time constrains of NRR DDDASusing much
cheaper hardware which can be located in the operating room.Our preliminary re-
sults in the CRTC indicate that it is possible to complete thetime critical component
of non-rigid registration within a minute —save another 3 to5 minutes, for the data
transfer— using a single (or two, for fault-tolerance) high-end workstations with
NVIDIA GeForce 8800 GT GPU and 2 x Intel Core2 Duo CPU 3.16GHz.We be-
lieve the use of current and emerging hardware architectures along with the coordi-
nated use of TeraGrid will be the most appropriate platform for NRR DDDAS. Our
results show that GPU provides excellent computing capabilities without the need
to sacrifice accuracy of the result.

Next generation operating rooms, like Advanced Multi-modality Image Guided
Operating (AMIGO) [21] suite, will provide new capabilities to improve intra-
operative image guidance. Advances in high performance anddistributed tools for
image analysis, like the NRR DDDAS we presented in this chapter, will be essen-
tial to meet the ever-increasing computational demands of such environments. The
use of DDDAS will be critical in health care among other areas, where this concept
proved to be successful [22].
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