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Abstract Current neurosurgical procedures utilize medical imadearous modal-
ities to enable precise location of tumor and critical bsdmictures for the purposes
of planning accurate brain tumor resection. The practigficdlty of using pre-
operative images during the surgery is caused by the intesiadive deformation
of the brain tissue (brain shift), which introduces disenegies with respect to the
pre-operative configuration. Intra-operative imagingwa# tracking of such defor-
mations, but cannot fully substitute for pre-operativead&ion-Rigid Registration
(NRR) is a complex time-consuming image processing opmraltiat allows the ad-
justment of the pre-operative image data to account foainperative brain shift.
We review computational aspects of a specific method foistedng brain MRI
to enable its evaluation during image-guided neurosurgerg consider different
strategies for parallelizing this NRR method. We show thatitmplementation we
develop not only allows the delivery of NRR results withire tblinical time con-
straints improving NRR speed, but also provides the pakotiimproving the ac-
curacy of registration by utilizing distributed Grid resoes for distributed search
of optimum parameters for the NRR method. In this contextdescribe a concept
of a dynamic data driven environment for highly distributezh-rigid registration
calculations. We present initial results of using natiaydlerinfrastructure as a plat-
form for such environment, and outline the major challerigastegrating it with
the operating rooms of the future.
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1 Introduction

Cancer is one of the leading causes of death both in the USAruohd the world.
Among the different types of cancer, brain cancer was estidhto claim over 50
thousand new victims in 2008 [1]. Neurosurgical resect®arie of the most com-
mon and effective treatment options for brain tumor pasietitis crucial that the
resection removes as much as possible of the tumor tissuke mbximally pre-
serving the vital structures of the healthy brain. Maximahbr excision increases
time to progression, reduces symptoms and seizures In ki@pt€r we explore how
the concept of Dynamic Data Driven Application Systems (i) [22], together
with the advances in medical image acquisition and disteith@computing, can as-
sist in enabling image guidance during neurosurgery andnpially can improve
the accuracy of the procedure, allowing more complete tursections without
additional morbidity.

Fig. 1 Intra-operative brain deformation. Left: pre-operatiliggher quality image, showing the
location of brain tumor. Right: intra-operative image shaywrain shift [3].

There are two major challenges in accomplishing the objestf neurosurgery.
First, it is not possible to distinguish between the tumat aan-tumor tissue with
the naked eye for certain kinds of tumors. Second, the eraatibns of the brain
areas that are responsible for the critical brain functég,, the motor cortex, are
patient-specific, and, again, cannot be identified with thieed eye. This is where
medical imaging becomes essential.

Magnetic Resonance Imaging (MRI) is indispensable in destrating brain
pathologies. Although not distinguishable with the nakgel @eoplastic tissues can
be differentiated from brain tissue based on changes in igiRasand corresponding
image intensities. MRI has also been shown to be useful istoacting functional
mapping of the brain using functional MRI (fMRI) [15]. Bothe structural and
functional imaging data are used for the purposes of impigpthe precision of the
resection.

Image registration in general is concerned with spatighalient of correspond-
ing features in two or more images. During image registrataospatial transfor-
mation is applied to one image, which is callmhting, such that it is brought into
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alignment with thetarget, or referenceposition of the object. During rigid image
registration, the floating image corresponds to the preaipe image, which is
aligned with the position of the patient using translatiand rotations (rigid trans-
formations).

During the course of surgery, opening of the skull and durssesa changes in
pressure inside the Intra-Cranial Cavity (ICC). Becauséisf and other factors,
such as drainage of cerebrospinal fluid, induced changesin tumor, and the ef-
fect of gravity, the brain changes its shape, introducisgmipancies in relation to
the pre-operative configuratioNon-rigid image registration uses spatially varying
transformation to account for this deformation. In gendrahge registration algo-
rithms are based on optimization of certain similarityemié between the fixed and
floating image under varying parameters of spatial trams&bion. The complexity
of this optimization depends on the number of parameteitsdiascribe the trans-
formation. Both rigid and non-rigid registration are opesearch areas in medical
image processing. However, non-rigid registration is aceptually more difficult
problem, which usually requires significant computing teses and time.

Non-rigid registration recovers the deformation of theiftzased on the intra-
operatively acquired imaging data. Recent advances ingakihage acquisition
have made it possible to acquire high resolution imagesaitiqular MRI, during
the surgery. Intra-operative MRI (iMRI) cannot substitpte-operative images be-
cause of its limited resolution and the high processing tieqgiired to obtain func-
tional data. However, iMRI can be used to guide registratibthe pre-operative
data.

There are three main requirements to non-rigid regismaffdRR) [9]. First,
NRR should deliver accurate results. Second, the resulighe consistently accu-
rate independent of the specific images being registereldstaould not be sensitive
to small variations in the parameter selection. Finallyequirement that is spe-
cific to IGNS is that registration should meet the time casts required by the
neurosurgical workflow, which is usually 5-10 minutes.

Prospective application of NRR is a dynamic process. iMRIdtined period-
ically as requested by the surgeon. Immediately followMdRI, NRR should be
used to estimate the deformation of the brain and updatertheperative images.
Usually, hospitals do not have locally available largelscamputational facilities.
In this Chapter we describe an infrastructure that enatdegpatation of non-rigid
registration using remotely located high performance aaing resources, guided
by intra-operative image updates.

2 Related Work

The research in NRR for IGNS can be separated into the dewelopof the core
registration methods, and design of end-to-end systerasatle capable to sup-
port NRR computation and deliver the results intra-opeeiti The choice of the
NRR method depends mostly on the intra-operative image hitpdaat captures
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brain deformation [11]. However, the core computation comgnts of NRR are
very similar for different intraoperative imaging modagdg.

Registration algorithms are based on optimizing certaimlarity measure be-
tween the intensities of the reference and floating imagesoh-rigid registration,
the number of parameters (degrees of freedom) that are bpiimgized is exceed-
ingly large compared to rigid registration. This contriggisignificantly to the costs
of computing the similarity metric and to the evaluation oddjents required dur-
ing optimization. However, optimization of the similarityeasure alone can lead to
unrealistic solutions, since non-rigid registration islaposed problem. Therefore,
NRR usually include some form of solution regularizatioioBechanical model-
ing of the tissue deformation is one of such regularizatfgpraaches. Deformation
of tissue is usually modeled using the Finite Element Met{ieM) [36], which
requires solving a system of equations. The size of thigays proportional to the
resolution of the brain biomechanical model.

Timely completion of the core NRR computations is the key ponent for the
efficient end-to-end registration systems. A number ofetjias have been proposed
to parallelize the time-consuming steps in medical imagegssing. Christensen
and collaborators were some of the first to discuss the usaraflel computing
resources for solving time-consuming problems relatedambVIRI processing on
a massively parallel SIMD architecture [8]. Warfield et &82] presented some of
the first results in intra-operative processing (segmimtpabf iMRI. The authors
demonstrate linear speedup of segmentation on a 20-payogeskstation, which
allows processing of a typical dataset in about 20 seconelnarkably, the devel-
oped method was subsequently applied and evaluated ptygheduring neuro-
surgeries and liver cryo-ablation procedures [33]. Theesgroup later developed a
high-performance method for intra-operative non-rigigisgation, which uses lin-
ear biomechanical model [31] solved in parallel. Althoubl authors report clin-
ically acceptable timing results delivered by their impéatation, the evaluation
was restricted to off-line experimental studies.

Computation of the NRR result within the time constraintmefirosurgery is
an essential requirement. In order to facilitate this taslpport of the computa-
tion on the remote resources may be required. These issuesdbkan recognized
by the community, and a number of solutions have been prop&efanescu et
al. [29] describe an NRR implementation that is exposed aslaservice. Ino et
al. developed an end-to-end system for rigid registratmmgutation on a remote
cluster [16]. Lippman and Kruggel use a customized gridaistiructure to design an
NRR system for IGNS [18].

To the best of our knowledge, none of the systems developddttowas used
prospectively during image-guided neurosurgeries. Opragech to the develop-
ment of such dynamic data-driven NRR system for IGNS (NRR BBPis to
adopt an existing NRR method of established accuracy. Nextparallelize the
most time-consuming components of this method, and desiognd-to-end sys-
tem to facilitate image guidance during neurosurgery.
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3 Physics-Based Non-Rigid Registration

The core registration method of our dynamic infrastructues originally devel-
oped by Clatz et al. in [9]. This NRR approach is specificabgigned for register-
ing high-resolution pre-operative data with iMRI. The NR&mputation consists
of preoperative and intra-operative components. Intrerajive processing starts
with the acquisition of the first iIMRI. However, thieme-critical part of the intra-
operative computation is initiated when a scan showing ehihe brain is available.
The basic idea of the registration method is to estimatsplaese deformation field
that matches similar locations in the image, and then usmdxbanical model of
brain deformation to discard unrealistic displacementstarivedense deformation
filed that defines transformation for each point in the image space

Sparse displacement vectors are obtained at the selectet$ pothe image,
where the variability in the intensities in the surroundiregion exceeds some
threshold. Suchegistration points can be identified prior to the time-critical part
of the computation in the floating (pre-operative) imagec®the reference (intra-
operative) scan is available, the deformation vector isneged at each of the se-
lected points by means of block matching. Fixed size reatlmgegions (blocks)
centered at the registration points are identified in theifigamage. Given such
a block, we next select a search region (window) in the refeémage. The dis-
placement of the block that maximizes intensity-basedlanity metric between
the image intensities in the block and the overlapping portif the window corre-
sponds to the vector value of the sparse deformation fieldeatdgistration point.
The normalized cross correlation (NCC) similarity metd@ialuated as follows:

nee 2iee(Brii) - Br)(Be (i) — Br)
/(Br() - Br)2(Br —Br )2

Bt andBg correspond to the average intensity values within the biotke refer-
ence and floating image respectively. We note the high coatipnal complexity of
the block matching procedure. Considering the sizes oétdimensional block and
window are defined in pixels &= {By,By,B,} andW = {W,,W,,W;}, the bound
on the number of operations@( BBy B, x WWWW;) for one registration point.

Estimation of brain deformation is based on the finite eleraaalysis (FEA) us-
ing linear elastic model of brain deformation. The finiteneét mesh of the intra-
cranial volume is constructed from the segmented ICC volfgi@wving the meth-
ods we evaluated in a separate study [13]. We then itergtheslk such a position of
the mesh verticed that balances the mechanical forces of the modeled tissie th
resist deformation, with the external forces, that coroesito the displacemeni>
estimated by block matching:

Fi < KUj, Ui11 < [K +HTSH] Y HTSD +F].

Here,K is the mechanical stiffness matrix [1}, is the interpolation matrix from
the mesh vertices to the block matching displacem&itsthe matrix that captures
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the confidence in the block matching resuftss the force that is increasing between
iterations to slowly cancel the influence of the mechanicaids.

Both block matching and iterative estimation of displaceteare time critical
and should be performed while the surgeons are waiting l8fwatching contributes
most to the computation costs, because of the exhaustivehstes optimum block
position. Iterative estimation of mesh vertex displacetméased on biomechanical
model requires solution of a system of linear equationsdgueiach iteration. How-
ever, the size of that system is constrained by the numbereshmertices, which
cannot be arbitrarily large due to inherent properties efMiRR algorithm [13].

In the context of the application, we define tegponse timas the time between
the acquisition of the intra-operative scan of the defortigsie and the final visu-
alization of the registered preoperative data on the censolhe operating room.
These steps performed intra-operatively form the Dynanmai@EDriven Application
System steered by the periodic acquisitions of the iIMRI.data broad objective is
to minimize the perceived (end-to-end) response time oDIDBAS component.

4 High Performance DDDAS Infrastructure for Non-Rigid
Registration

The baseline code used in the design of the NRR was the implatien developed
and evaluated by Clatz et al. [9]. Based on the benchmarkidgaaalysis of this
implementation, we identified the following problems:

1. The execution time of the original non-rigid registratioode is highly data-
dependent. When computed on a high-end 4 CPU workstatiergamputation
time varies between 30 and 50 minutes. The scalability ottue is poor due
to work-load imbalances.

2. The code is designed as a single monolithic componerdgsirwas not evalu-
ated in the intraoperative mode), and a single failure atpamyt requires restart-
ing the registration from the beginning.

3. The original code is implemented in PVM [5] which is not eig supported as
compared to the use of MPI [28] for message passing.

Consequently, we identified the following implementatidjeatives in the de-
sign of the system.

High-performance Develop an efficient and portable software environment for
parallel and distributed implementation of real-time majid registration method
for both small scale parallel machines and large scale gpbgrally distributed
Clusters of Workstations (CoWs). The implementation stidad able to work on
both dedicated, and time-shared resources.

Quality-of-service (QoS) Provide functionality not only to sustain failure but
also to dynamically replace/reallocate faulty resourcélh wew ones during the
real-time data acquisition and computation.
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Ease-of-use Develop a GUI which automatically will handle exceptionsy(g
faults, resource management, and network outages), aistliagbe parameter ini-
tialization.

Different strategies can be explored in high performangdementation of the
described NRR method. We first explore how this can be donggugbiquitous
CoWs. The CoW-based implementation was used prospectielng the recent
studies of NRR at BWH [2]. We also describe our recent efftotgurther in-
crease the availability of the implementation by develgpts components ported
on Graphical Processing Units (GPUs) and studying the u&gidfresources.

We develop NRR DDDAS based on the concept ofecbmputational workflow
We re-design the core NRR implementation as a coordinatex peocessing com-
ponents that communicate by passing data. Such approaglsdt separate time-
critical steps, and concentrate on the optimum parallétinastrategies for each
individual step that requires performance improvement.

4.1 Cluster of Workstations

In the recent years CoWs have become power-plants of ubiggiitomputing.
Availability of such cluster at the College of William and MaCWM, Williams-
burg, VA) motivated the development of the implementatibthe CoW-based NRR
DDDAS. In addition to the dedicated computing cluster, we the shared resources
of a computer lab to boost computing power and reliabilitytted implemented
system. The targeted users of our DDDAS are clinical rebearof Brigham and
Women’s Hospital (BWH, Boston, MA). Our approach is to mag ¢bmponents of
the workflow on the computing and communication resourc&WwM and BWH,
and expose the DDDAS to the clinical researchers by meansvebaservice inter-
face. The timeline of the interaction with the complete NRRIAS is shown in
Figure 2. The key component of this system, which requiresligdization, is block
matching.

Multi-level distributed block matching In order to find a match for a given
block, we need the block center coordinates, and the areég diked and floating
images bounded by the block matching window [9]. The fixed fémating images
are loaded on each of the processors during the initiadizatiep, as shown in Fig. 2.
The total workload is maintained inwaork-pooldata structure. Each item of the
work-pool contains the three coordinates of the block agitaéal number of blocks
for a typical dataset is around 100,000), and the best mataidffor that block (in
case the block was processed; otherwise that field is empty).

However, because of the scarce resource availability we teelvandle computa-
tional clusters that belong to different administrativerdons. We address this issue
with hierarchical multi-level organization of the comptida using master-worker
model. A dedicated master node is selected within eacheslushe master main-
tains a replica of the global work-pool, and is responsibledistributing the work
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Fig. 2 Timeline of the image processing steps during IGNS (thentl running at BWH, and
the server is using multiple clusters at CWM, for fault-talece purposes).

according to the requests of the nodes within the assignester] and communicat-
ing the execution progress to the other master(s).

Multi-level Dynamic Load Balancing The imbalance of the processing time
across different nodes involved in the computation is cause our inability or
difficulty to predict the processing time required per blafldata on a given ar-
chitecture. The main sources of load imbalancepatform-dependenThese are
caused by the heterogeneous nature of the PEs we use. Moogtamiby, some
of the resources may be time-shared by multiple users anitappns, which af-
fect the processing time in an unpredictable manner. Thégtied-) static work
assignment of any kind is not effective when some of the nesmuoperate in the
time-shared mode.

We have implemented a multi-level hierarchical dynamidlbalancing scheme
for parallel block matching. We use initial rough estimataf the combined com-
putational power of each cluster involved in the computaflmased on CPU clock
speed) for the weighted partitioning of the work-pool arilahassignment of work.
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However, this is a rough “guess” estimation, which is adjdsat runtime using
a combination of master/worker and work-stealing [6, 34}hods. Each master
maintains an instance of the global work-pool. Initialll}, these pools are iden-
tical. The portion of the work-pool assigned to a specificstdu is partitioned in
meta-blocks (a sequence of blocks), which are passed tdusieicnodes using the
master-worker model. As soon as all the matches for a metklare computed,
they are communicated back to the master, and a new metk-Sloequested. In
case the portion of the work-pool assigned to a master isegsad, the master con-
tinues with the “remote” portions of work (i.e., those, iaily assigned to other
clusters). As soon as the processing of a “remote” metakhilbcomplete, it is
communicated to all the other master nodes to prevent dupticcomputation.

Multi-Level Fault Tolerance Our implementation is completely decoupled,
which provides the first level of fault tolerance, i.e., ietfailure takes place at
any of the stages, we can seamlessly restart just the fdilaslepof the algorithm
and recover the computation. The second level of fault aolee concerns with the
parallel block matching phase. It is well-known that thenarhbility of parallel
computations to hardware failures increases as we scatezihef the system. We
would like to have a robust system which in case of failure ¥dre able to con-
tinue the parallel block matching without recomputing tesobtained before the
failure. This functionality is greatly facilitated by ma#ining the previously de-
scribed work-pool data-structure which is managed by thetenaodes.

The work-pool data-structure is replicated on the sepdilatsystems of these
clusters, and has a tuple for each of the block centers. A ttgoh be either empty,
if the corresponding block has not been processed, or oibeitrcontains the three
components of the best match for a given block. The work-slnchronized
periodically between the two clusters, and within eachtelus is updated by the
PEs involved. As long as one of the clusters involved in thmmatation remains
operational, we are able to sustain the failure of the otberputational side and
deliver the registration result.

Ease-of-use The implementation consists of the client and server coraptsn
The client is running at the hospital site, and is based on b-¥gevice, which
makes it highly portable and easy to deploy. On the server tié input data and ar-
guments are transferred to the participating sites. Ctlyreme have a single server
responsible for this task. The computation proceeds ubmgarticipating available
remote sites to provide the necessary performance anetédeitance.

We applied the developed NRR DDDAS for registering sevengendatasets
acquired at BWH. The computations for two of these severstiedion computa-
tions were accomplished during the course of surgery (aCibliege of William
and Mary), while the rest of the computations were done sptotively. All of the
intra-operative computations utiliz&tiClone(a heterogeneous cluster of worksta-
tions located at CWM, reserved in advance for the regisinatomputation) and
the workstations of the student lab (time-shared mode).details of the hardware
configuration can be found in [7]. Data transfer between thvarks of CWM
and BWH (subnet of Harvard University) are facilitated bg thternet2 backbone
network with the slowest link having bandwidth of 2.5 Ghps.
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Table 1 Response time (sec) of the intra-surgery part of the CoViéebdERR DDDAS at various

stages of development.

Setup ID

1 2 3 4 5 6 7
High-end workstation, using original 1558 1850 2090 2882722302 3130
PVM implementation
SciClone (240 procs), 745 639 595 617 570 550.4 1153
no load-balancing
SciClone (240 procs) and
CS lab(29 procs), dynamic 2-level 30 40 42 37 34 33 35
load-balancing and fault-tolerance

The evaluation results are summarized in Table 1. We wee tableduce the
total response time to 2 minutes (4 minutes, including time tio transfer the data).
We showed, that dynamic load balancing is highly effectiveiine-shared envi-
ronment. Modular structure of the implemented code gresd$isted in the overall
usability and reliability of the code. The fault-toleranoechanisms implemented
are absolutely essential and introduce a mere 5-10% ireredke execution time.

4.2 Grid Computing Resources

In the last decade, significant effort has been focused oelolement of the support-
ing standards and software for Grid computing, deployiragpction grid systems
worldwide and porting applications on those systems. Ooh puoduction system
under continuous improvement and development is USA-b@isealGrid [23]. As
of May 2007, TeraGrid was connecting 11 high-end computatisites within the
USA, providing “...more than 250 TFLOPS of computing cafigband more than
30 petabytes of storage” and therefore making TeraGrithé world’s largest, most
comprehensive distributed cyberinfrastructure for opeergific research” [23].
Currently, TeraGrid connects 11 computational centersiging cumulative peak
performance of 1124 teraflops. The capabilities of Tera@médcontinuously grow-
ing, providing computational and storage resources otiserwnavailable to any
single research institution worldwide.

There are two major advantages of using the Grid infragiredor NRR DDDAS.
First, the implementation is not restricted to run on a dpeciuster resource. With
the multiple computing centers participating in TeraGt@mporary resource out-
ages are more feasible to tolerate. Second, complex imagessing methods, like
NRR, often require proper setting of the large number of ip&tars in order to
achieve optimum accuracy. Identification of such paramsgerbination is a non-
trivial task. One approach to selecting the optimum paramebmbination is to
usespeculative computatiofi6], when multiple instances of NRR are computed
in parallel with different parameter settings. In this nefjave have developed ini-
tial accuracy assessment solutions [12] to facilitateahuiperative speculative NRR
over the Grid. In out Grid NRR DDDAS, we leverage the CoW-lokiseplementa-
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tion, augment it with the automatic error estimation, andettgp a framework for
speculative execution of NRR on the TeraGrid.

While TeraGrid resources can be accessed directly for i@l job submis-
sion and data transfer, doing this manually on the largeeswads part of workflow
execution is not practical. We adopted Swift workflow sdrigtand management
system [35] to implement and deploy NRR workflow. Swift hasiibdeveloped and
evaluated to support grid implementations that are baséslalous Toolkit, which
allows to use this system without any modifications to schedorkflows on Tera-
Grid. SwiftScript, the scripting language used for workfldefinition, is a powerful
way of abstracting interaction of the processing taskscvhilows to define com-
posite data inputs, dependencies between the processksysad provides familiar
control structures like loops and conditional structuvesich allow flexible control
over workflow definition and execution.

Fault-tolerance and dynamic load-balancing are impodiaatacteristics of NRR
DDDAS. Swift implements basic fault-tolerance of workfloxeeution at the indi-
vidual task level, which is critical for NRR computations.dase a particular task
fails to deliver the output, Swift will re-schedule its ex#ion, possibly on a dif-
ferent site. Task-level load-balancing is also providedHhsy Swift infrastructure.
The execution traces for the same computational task aréncowisly collected
and used to dynamically select the best performing site vithemask is scheduled
again.

Swift provides the means to define and execute the workflowgiwtonsists of
individual processing tasks. Each of the processing taskst e available as an ex-
ecutable at each of the sites, that will be involved in thekflow computation. The
details of running a specific task are provided to Swift in sbecalledtranslation
catalogavailable at the client (submission) site. The translatiatalog contains
the identifier of the remote site where the executable igllest, together with the
optional information on its invocation.

Fig. 3 NRR workflow diagram for single registration execution @ are the time-critical com-
ponents of the workflow).

The NRR workflow diagram of a single NRR procedure togethéh wie ac-
curacy assessment module is shown in Figure 3. The blockhingttask is par-
allelized using MPI, and has been deployed on the TeraGed §r remote par-
allel execution. The other components of the workflow arecetexrl on the local
resources (single node of the CWM SciClone cluster). ThiRN®rkflow corre-
sponds to the base case for computation supported by otechessed implemen-
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tation we discussed earlier, augmented with the accuramsasient module. The
accuracy assessment module of the Grid-based NRR DDDAS evedaghed sepa-
rately [12]. This module allows to automatically estimdte tegistration error. The
construction of the workflow for speculative execution isigthtforward with the
scripting capabilities of Swift. This allows us to study tingpact of some of the
parameters on the registration accuracy.

Table 2 Absolute improvement in accuracy (mm) evaluated at seddetedmarks using optimal
values of block size and outlier rejection rate.

Case 1 2 3 4 5 6 7 8 9 10 11 12

02 01 02 02 03 01 03 04 00 02 02 03
02 00 00 00 02 03 03 02 05 03 01 02
06 10 02 29 00 01 03 - - -
o9 08 02 04 07 O5 07 04 03 07 07 -
00 03 00 OO 08 05 04 00 03 04 - -
02 01 02 01 20 01 00 01 - - - -

OOk, WNPRP

We considered the impact of varying the block size and aqutiigction rate on
the accuracy of NRR on retrospective clinical data. Tablei@arsarizes the im-
provement in accuracy evaluated at the expert-selectadraial landmarks with
the optimum combination of these two parameters, as cordpatéeir default set-
tings. Based on the experimental data, in most cases, gg&iregion accuracy is
achieved using the default parameters suggested by CEtZ@t However, in Case
3 the improvement of registration accuracy was significanoth cases, however,
there were landmark points, where registration error exege/oxel dimensions.
The analyzed data also suggests, that the optimum valuetligraejection is var-
ied in different locations of the image. For example, if wasider landmarks 5 and
12 in Case 1, the optimal combination of the studied parame&talifferent in each
case, as we show in Figure 4.

T T 4 T T T
OO block 5x5x5
5 G181 block 7x7x7
5 S block 9x9x9
3 A—A block 11x11x11
4 A /

AN

error, mm

1%
\\

1|-.]| 6O block 5x5x5

58] block 7x7x7

= block 9x9x9

A—A block 11x11x11

0 T T T | | | | | | | 0 | | | | | | | | | |

S 10 15 20 25 30 35 40 45 50 510 15 20 25 30 35 40 45 50
outlier rejection rate, % outlier rejection rate, %

Fig. 4 Influence of the block size and rejection rate on landmaréreoase 1, landmark 5 (top),
and case 1, landmark 12 (bottom).
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4.3 Graphical Processing Units

Graphics Processing Unit (GPU), an inexpensive, singip;ahassively parallel
architecture, have shown orders of magnitude higher thrpugand performance
per dollar than traditional CPUs. In addition, a GPU can tsleadeployed in the
Operating Room as a co-processor of CPU without hinderingjrre surgical op-
erations. In recent years, some researchers have mades déffaaccelerate NRR
using GPU [25, 20, 30, 17]. However, to satisfy the requirenfier the accuracy
and real-time in clinic a more advanced GPU based NRR is iatjer

The workflow implementation of NRR DDDAS allows us to use lpestlleliza-
tion strategies for individual components. Block matchaamponent is embar-
rasingly parallel, which makes it highly amenable to GPUafialization. We use
CUDA programming model [24] to develop the GPU implemewtatf this com-
ponent. CUDA organizes GPU threads in grid, which is an aofdfocks and each
block is an array of threads. Kernel is the core code to beuwtgdmn each thread,
which performs on different sets of data using its ID in a SIN#3hion. CUDA
programming model can be treated as two levels loop: bload End thread level.
In the following code, the outer loop can be parallelizechgstPU on the thread
block level. Computation of the similarity metric for an igeblock (inner loop) is
parallelized on GPU thread level, while the similarity niettomputation is done
on CPU:

1. for each image blockblk in floating imagedo
2: define search windoswin fixed image

3:  for each image blockblk in swdo

4 calculate similaritys betweenfblk andtblk

5. end for

6: find the maximuns and corresponding displacement
7: end for

This GPU-based implementation of block matching can gajpead up of about
10, as we show in Figure 5, compared to CPU. The speed up isuneelsat seven
differentimage block sizes. Figure 5 clearly shows that G&uhing time increases
linearly as we increase the block size, but CPU exhibits aslipear behavior.

Optimization of GPU codes is particularly important, silcere are numerous
parameters of the execution environment, which can affedopmance. Signifi-
cant evidence exists that there can be orders of magnituflerpence difference
depending on the level of optimization for GPU implememtasi [4, 26, 27]. The
search space generated by the execution configurationagmthat it is not prac-
tical to find the optimal parameters by trial-and-error.&aVrecent studies trackle
this problem through empirical search-based approach&slf. We utilize the
method provided in [19] to optimize the GPU execution confagion for block
matching and improve speedup further, as shown in Figureebobgerve speedup
of about 30 when comparing optimized and non-optimized @m@ntations.
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5 Discussion

We have described the use of Dynamic Data Driven ApplicaBigatems for Im-
age Guided Neurosurgery, enabled by the advances in mexliage acquisition
and parallel/distributed computing. The DDDAS concépit,the first time ever in
clinical practice, helped us to complete and present ngidniegistration results to
neuro-surgeons at BWH during tumor resection procedura@ggusiage landmark
tracking across the entire brain volumdsing NRR DDDAS we were able to re-
duce the total response time of the time-critical compatatiomponent to about
35 sec, therefore delivering effective speedup of nearly, B3 compared to the
original sequential implementation of the code. In ordeatbieve this, we used
remotely (at CWM) several CoWs with the total of 269 proces$d] (the trans-
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fer of data from CWM to the operating room in BWH takes betw8dn 5 min).
Our preliminary data suggest that we might be able to imptbgeaccuracy of the
NRR method by performing speculative execution [14] on teeaGrid which is
capable to deliver about 250 TFLOPS. This computing povaarsiates into tens
of thousands of registrations (with different parametergmost real-time, if there
is a proper coordination with all sides to avoid schedulingfticts. However, this
requires availability of network connection between theraging room and remote
computing resources. Also, the imaging data must be anamsghgrior to transfer
to address the confidentiality concerns.

Our next goal is to meet the real-time constrains of NRR DDDRA#Bg much
cheaper hardware which can be located in the operating rGampreliminary re-
sults in the CRTC indicate that it is possible to completeitne critical component
of non-rigid registration within a minute —save another S tminutes, for the data
transfer— using a single (or two, for fault-tolerance) higid workstations with
NVIDIA GeForce 8800 GT GPU and 2 x Intel Core2 Duo CPU 3.16GWe. be-
lieve the use of current and emerging hardware architextlong with the coordi-
nated use of TeraGrid will be the most appropriate platfanN\RR DDDAS. Our
results show that GPU provides excellent computing cajiailwithout the need
to sacrifice accuracy of the result.

Next generation operating rooms, like Advanced Multi-nligamage Guided
Operating (AMIGO) [21] suite, will provide new capabiliigo improve intra-
operative image guidance. Advances in high performancelatdbuted tools for
image analysis, like the NRR DDDAS we presented in this araptill be essen-
tial to meet the ever-increasing computational demandsaf gnvironments. The
use of DDDAS will be critical in health care among other areasere this concept
proved to be successful [22].
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