Publication Details

 

 


 

Track Identification for CLAS12 using Artificial Intelligence

 

Gagik Gavalian, Polykarpos Thomadakis, Angelos Angelopoulos and Nikos Chrisochoides.

 

Published in 26TH INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY & NUCLEAR PHYSICS, May, 2023

 

Abstract

 

Particle track reconstruction is the most computationally intensive process in nuclear physics experiments. Traditional algorithms use a combinatorial approach that exhaustively tests track measurements (hits) to identify those that form an actual particle trajectory. In this article we describe the development of machine learning models that assist the tracking algorithm by identifying valid track candidates from the measurement ("hits") in drift chambers. Several types of machine learning models were tested, including: Convolutional Neural Networks (CNN), Multi-Layer Perceptron (MLP), Extremely Randomized Trees (ERT) and Recurrent Neural Networks (RNN). As a result of this work the CLAS12 tracking efficiency increased by ~15% for single particle tracking, and 20%-40% gained efficiency in multi-particle final states. The tracking code also increased in speed by 35%.

 

 


 

  [PDF]          [BibTex] 

 

 

[Return to Publication List]